1
|
Are glia targets for neuropathic orofacial pain therapy? J Am Dent Assoc 2020; 152:774-779. [PMID: 32921390 DOI: 10.1016/j.adaj.2020.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 01/06/2023]
|
2
|
Chambel SS, Tavares I, Cruz CD. Chronic Pain After Spinal Cord Injury: Is There a Role for Neuron-Immune Dysregulation? Front Physiol 2020; 11:748. [PMID: 32733271 PMCID: PMC7359877 DOI: 10.3389/fphys.2020.00748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating event with a tremendous impact in the life of the affected individual and family. Traumatic injuries related to motor vehicle accidents, falls, sports, and violence are the most common causes. The majority of spinal lesions is incomplete and occurs at cervical levels of the cord, causing a disruption of several ascending and descending neuronal pathways. Additionally, many patients develop chronic pain and describe it as burning, stabbing, shooting, or shocking and often arising with no stimulus. Less frequently, people with SCI also experience pain out of context with the stimulus (e.g., light touch). While abolishment of the endogenous descending inhibitory circuits is a recognized cause for chronic pain, an increasing number of studies suggest that uncontrolled release of pro- and anti-inflammatory mediators by neurons, glial, and immune cells is also important in the emergence and maintenance of SCI-induced chronic pain. This constitutes the topic of the present mini-review, which will focus on the importance of neuro-immune dysregulation for pain after SCI.
Collapse
Affiliation(s)
- Sílvia S Chambel
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Translational NeuroUrology Group, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Isaura Tavares
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Pain Research Group, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| | - Célia D Cruz
- Department of Biomedicine, Experimental Biology Unit, Faculty of Medicine, University of Porto, Porto, Portugal.,Translational NeuroUrology Group, Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, Porto, Portugal
| |
Collapse
|
3
|
Cellular Mechanisms for Antinociception Produced by Oxytocin and Orexins in the Rat Spinal Lamina II-Comparison with Those of Other Endogenous Pain Modulators. Pharmaceuticals (Basel) 2019; 12:ph12030136. [PMID: 31527474 PMCID: PMC6789548 DOI: 10.3390/ph12030136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/31/2019] [Accepted: 09/12/2019] [Indexed: 01/23/2023] Open
Abstract
Much evidence indicates that hypothalamus-derived neuropeptides, oxytocin, orexins A and B, inhibit nociceptive transmission in the rat spinal dorsal horn. In order to unveil cellular mechanisms for this antinociception, the effects of the neuropeptides on synaptic transmission were examined in spinal lamina II neurons that play a crucial role in antinociception produced by various analgesics by using the whole-cell patch-clamp technique and adult rat spinal cord slices. Oxytocin had no effect on glutamatergic excitatory transmission while producing a membrane depolarization, γ-aminobutyric acid (GABA)-ergic and glycinergic spontaneous inhibitory transmission enhancement. On the other hand, orexins A and B produced a membrane depolarization and/or a presynaptic spontaneous excitatory transmission enhancement. Like oxytocin, orexin A enhanced both GABAergic and glycinergic transmission, whereas orexin B facilitated glycinergic but not GABAergic transmission. These inhibitory transmission enhancements were due to action potential production. Oxytocin, orexins A and B activities were mediated by oxytocin, orexin-1 and orexin-2 receptors, respectively. This review article will mention cellular mechanisms for antinociception produced by oxytocin, orexins A and B, and discuss similarity and difference in antinociceptive mechanisms among the hypothalamic neuropeptides and other endogenous pain modulators (opioids, nociceptin, adenosine, adenosine 5’-triphosphate (ATP), noradrenaline, serotonin, dopamine, somatostatin, cannabinoids, galanin, substance P, bradykinin, neuropeptide Y and acetylcholine) exhibiting a change in membrane potential, excitatory or inhibitory transmission in the spinal lamina II neurons.
Collapse
|
4
|
Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury. Neural Plast 2017; 2017:2480689. [PMID: 28951789 PMCID: PMC5603132 DOI: 10.1155/2017/2480689] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 02/01/2023] Open
Abstract
The hyperactive state of sensory neurons in the spinal cord enhances pain transmission. Spinal glial cells have also been implicated in enhanced excitability of spinal dorsal horn neurons, resulting in pain amplification and distortions. Traumatic injuries of the neural system such as spinal cord injury (SCI) induce neuronal hyperactivity and glial activation, causing maladaptive synaptic plasticity in the spinal cord. Recent studies demonstrate that SCI causes persistent glial activation with concomitant neuronal hyperactivity, thus providing the substrate for central neuropathic pain. Hyperactive sensory neurons and activated glial cells increase intracellular and extracellular glutamate, neuropeptides, adenosine triphosphates, proinflammatory cytokines, and reactive oxygen species concentrations, all of which enhance pain transmission. In addition, hyperactive sensory neurons and glial cells overexpress receptors and ion channels that maintain this enhanced pain transmission. Therefore, post-SCI neuronal-glial interactions create maladaptive synaptic circuits and activate intracellular signaling events that permanently contribute to enhanced neuropathic pain. In this review, we describe how hyperactivity of sensory neurons contributes to the maintenance of chronic neuropathic pain via neuronal-glial interactions following SCI.
Collapse
|
5
|
Holló K, Ducza L, Hegyi Z, Dócs K, Hegedűs K, Bakk E, Papp I, Kis G, Mészár Z, Bardóczi Z, Antal M. Interleukin-1 receptor type 1 is overexpressed in neurons but not in glial cells within the rat superficial spinal dorsal horn in complete Freund adjuvant-induced inflammatory pain. J Neuroinflammation 2017. [PMID: 28645297 PMCID: PMC5482961 DOI: 10.1186/s12974-017-0902-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Background All known biological functions of the pro-inflammatory cytokine interleukin-1β (IL-1β) are mediated by type 1 interleukin receptor (IL-1R1). IL-1β–IL-1R1 signaling modulates various neuronal functions including spinal pain processing. Although the role of IL-1β in pain processing is generally accepted, there is a discussion in the literature whether IL-1β exerts its effect on spinal pain processing by activating neuronal or glial IL-1R1. To contribute to this debate, here we investigated the expression and cellular distribution of IL-1R1 in the superficial spinal dorsal horn in control animals and also in inflammatory pain. Methods Experiments were performed on rats and wild type as well as IL-1R1-deficient mice. Inflammatory pain was evoked by unilateral intraplantar injection of complete Freund adjuvant (CFA). The nociceptive responsiveness of control and CFA-treated animals were tested daily for withdrawal responses to mechanical and thermal stimuli before and after CFA injection. Changes in the expression of 48 selected genes/mRNAs and in the quantity of IL-1R1 protein during the first 3 days after CFA injection were measured with the TaqMan low-density array method and Western blot analysis, respectively. The cellular localization of IL-1R1 protein was investigated with single and double staining immunocytochemical methods. Results We found a six times and two times increase in IL-1R1 mRNA and protein levels, respectively, in the dorsal horn of CFA-injected animals 3 days after CFA injection, at the time of the summit of mechanical and thermal allodynia. Studying the cellular distribution of IL-1R1, we found an abundant expression of IL-1R1 on the somatodendritic compartment of neurons and an enrichment of the receptor in the postsynaptic membranes of some excitatory synapses. In contrast to the robust neuronal localization, we observed only a moderate expression of IL-1R1 on astrocytes and a negligible one on microglial cells. CFA injection into the hind paw caused a remarkable increase in the expression of IL-1R1 in neurons, but did not alter the glial expression of the receptor. Conclusion The results suggest that IL-1β exerts its effect on spinal pain processing primarily through neuronal IL-1R1, but it can also interact in some extent with IL-1R1 expressed by astrocytes.
Collapse
Affiliation(s)
- Krisztina Holló
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary
| | - László Ducza
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary
| | - Zoltán Hegyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary
| | - Klaudia Dócs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary
| | - Krisztina Hegedűs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary
| | - Erzsébet Bakk
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary
| | - Ildikó Papp
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary.,Department of Anatomy, Histology and Embryology, Faculty of Pharmacy, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary
| | - Gréta Kis
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary
| | - Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary
| | - Zsuzsanna Bardóczi
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Miklós Antal
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, 4012, Debrecen, Hungary. .,MTA-DE Neuroscience Research Group, Nagyerdei krt. 98, 4012, Debrecen, Hungary.
| |
Collapse
|
6
|
Alfonso Romero-Sandoval E, Sweitzer S. Nonneuronal central mechanisms of pain: glia and immune response. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:325-58. [PMID: 25744678 DOI: 10.1016/bs.pmbts.2014.11.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of central glial cells in the mechanisms underlying pain has been intensively studied in the last two decades. Most studies on glia and pain focused on the potential detrimental role of glial cells following noxious stimulus/insults manifested as an "activation" or a "reactive" state (increase in glial marker expression and production of proinflammatory/nociceptive molecules). Therefore, "activated" or "reactive" glial cells became a target for the future generation of drugs to treat chronic pain. Several glial modulators that reduce the activation of glial cells have shown great efficacy in multiple animal (rodents mostly) models of pain (acute, subacute, chronic, inflammatory, neuropathic, surgical, etc.). These encouraging findings inspired clinical trials that have been completed in the last 5 years. Unfortunately, all clinical trials with these glial modulators have failed to demonstrate efficacy for the treatment of pain. New lines of investigation and elegant experimental designs are shedding light on alternative glial functions, which demonstrate that "glial reactivity" is not necessarily deleterious in some pathological conditions. New strategies to validate findings through our current animal models are necessary to enhance the translational value of our preclinical studies. Also, more studies using human subjects would enhance our understanding of glial cells in the context of pain. This chapter explores the available literature to objectively ponder the potential role of glial cells in human pain conditions.
Collapse
Affiliation(s)
- E Alfonso Romero-Sandoval
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina, USA.
| | - Sarah Sweitzer
- Department of Pharmaceutical and Administrative Sciences, Presbyterian College School of Pharmacy, Clinton, South Carolina, USA
| |
Collapse
|
7
|
Liu T, Jiang CY, Fujita T, Luo SW, Kumamoto E. Enhancement by interleukin-1β of AMPA and NMDA receptor-mediated currents in adult rat spinal superficial dorsal horn neurons. Mol Pain 2013; 9:16. [PMID: 23537341 PMCID: PMC3622562 DOI: 10.1186/1744-8069-9-16] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/14/2013] [Indexed: 11/10/2022] Open
Abstract
Background Proinflammatory cytokine interleukin-1β (IL-1β) released from spinal microglia plays an important role in the maintenance of acute and chronic pain states. However, the cellular basis of this action remains poorly understood. Using whole-cell patch-clamp recordings, we examined the action of IL-1β on AMPA- and NMDA-receptor-mediated currents recorded from substantia gelatinosa (SG) neurons of adult rat spinal cord slices which are key sites for regulating nociceptive transmission from the periphery. Results AMPA- and NMDA-induced currents were increased in peak amplitude by IL-1β in a manner different from each other in SG neurons. These facilitatory actions of IL-1β were abolished by IL-1 receptor (IL-1R) antagonist (IL-1ra), which by itself had no detectable effects on AMPA- and NMDA-induced currents. The AMPA- but not NMDA-induced current facilitated by IL-1β was recovered to control level 30 min after IL-1β washout and largely depressed in Na+-channel blocker tetrodotoxin-containing or nominally Ca2+-free Krebs solution. Minocycline, a microglia inhibitor, blocked the facilitatory effect of IL-1β on AMPA- but not NMDA-induced currents, where minocycline itself depressed NMDA- but had not any effects on AMPA-induced currents. Conclusions IL-1β enhances AMPA and NMDA responses in SG neurons through IL-1R activation; the former but not latter action is reversible and due to an increase in neuronal activity in a manner dependent on extracellular Ca2+ and minocycline. It is suggested that AMPA and NMDA receptors are positively modulated by IL-1β in a manner different from each other; the former but not latter is mediated by a neurotransmitter released as a result of an increase in neuronal activity. Since IL-1β contributes to nociceptive behavior induced by peripheral nerve or tissue injury, the present findings also reveal an important cellular link between neuronal and glial cells in the spinal dorsal horn.
Collapse
Affiliation(s)
- Tao Liu
- Center for Laboratory Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, China.
| | | | | | | | | |
Collapse
|
8
|
Sweitzer S, De Leo J. Propentofylline: glial modulation, neuroprotection, and alleviation of chronic pain. Handb Exp Pharmacol 2011:235-50. [PMID: 20859798 DOI: 10.1007/978-3-642-13443-2_8] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Propentofylline is a unique methylxanthine with clear cyclic AMP, phosphodiesterase, and adenosine actions, including enhanced synaptic adenosine signaling. Both in vitro and in vivo studies have demonstrated profound neuroprotective, antiproliferative, and anti-inflammatory effects of propentofylline. Propentofylline has shown efficacy in preclinical models of stroke, opioid tolerance, and acute and chronic pain. Clinically, propentofylline has shown efficacy in degenerative and vascular dementia, and as a potential adjuvant treatment for schizophrenia and multiple sclerosis. Possible mechanisms of action include a direct glial modulation to decrease a reactive phenotype, decrease glial production and release of damaging proinflammatory factors, and enhancement of astrocyte-mediated glutamate clearance. This chapter reviews the literature that supports a myriad of protective actions of this small molecule and implicates propentofylline as a potential therapeutic for the treatment of chronic pain. From these studies, we propose a CNS multipartite synaptic action of propentofylline that includes modulation of pre- and postsynaptic neurons, astrocytes, and microglia in the treatment of chronic pain syndromes, including, but not limited to, neuropathic pain.
Collapse
Affiliation(s)
- Sarah Sweitzer
- Department of Pharmacology, University of South Carolina, USC School of Medicine, Columbia, SC 29208, USA
| | | |
Collapse
|
9
|
Wolf G, Livshits D, Beilin B, Yirmiya R, Shavit Y. Interleukin-1 signaling is required for induction and maintenance of postoperative incisional pain: genetic and pharmacological studies in mice. Brain Behav Immun 2008; 22:1072-1077. [PMID: 18442892 DOI: 10.1016/j.bbi.2008.03.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 03/09/2008] [Accepted: 03/20/2008] [Indexed: 11/26/2022] Open
Abstract
Postoperative incisional pain is characterized by persistent acute pain in the area of the cut, and is associated with release of proinflammatory cytokines, including interleukin-1 (IL-1), which play important hyperalgesic and allodynic roles in various inflammatory conditions. In the present study, we tested the role of IL-1 signaling in postoperative incisional pain using three mouse strains impaired in IL-1 signaling due to deletion of the IL-1 type I receptor on a mixed genetic background (IL-1rKO) or congenic background (IL-1rKOCog), or due to transgenic over-expression of IL-1 receptor antagonist (IL-1raTG). We used the relevant wild-type (WT) mice both as controls for the mutant strains, and for assessing the effects of pharmacological blockade of IL-1-signaling. Mechanosensitivity was assessed using the von-Frey filament test before, and up to 4 days following plantar incision, an animal model of postoperative pain. WT mice developed significant allodynia in the incised, compared with the intact, hind-paw beginning 3h after the incision and lasting up to 48h postoperatively. In contrast, IL-1rKO, IL-1rKOCog, and IL-1raTG mice, as well as WT mice chronically treated with IL-1ra, did not display increased mechanical pain sensitivity in either hind-paw. To test the hypothesis that IL-1-signaling is also involved in the maintenance of postoperative pain, WT mice were acutely treated with IL-1ra 24h following the incision, when allodynia was already evident. This treatment reversed the allodynic response throughout the observation period. Together, these findings suggest that IL-1 plays a critical role in the development and maintenance of postoperative incisional pain.
Collapse
Affiliation(s)
- Gilly Wolf
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel
| | - Dina Livshits
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel
| | - Benzion Beilin
- Department of Anesthesiology, Rabin Medical Center, Hasharon Hospital, Petah Tiqwa 49372, Affiliated with Sackler School of Medicine, Tel Aviv University, Israel
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel
| | - Yehuda Shavit
- Department of Psychology, The Hebrew University of Jerusalem, Mount Scopus, Jerusalem 91905, Israel.
| |
Collapse
|
10
|
Gwak YS, Crown ED, Unabia GC, Hulsebosch CE. Propentofylline attenuates allodynia, glial activation and modulates GABAergic tone after spinal cord injury in the rat. Pain 2008; 138:410-422. [PMID: 18353556 DOI: 10.1016/j.pain.2008.01.021] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 12/19/2007] [Accepted: 01/22/2008] [Indexed: 01/05/2023]
Abstract
In this study, we evaluated whether propentofylline, a methylxanthine derivative, modulates spinal glial activation and GABAergic inhibitory tone by modulation of glutamic acid decarboxylase (GAD)(65), the GABA synthase enzyme, in the spinal dorsal horn following spinal cord injury (SCI). Sprague-Dawley rats (225-250 g) were given a unilateral spinal transverse injury, from dorsal to ventral, at the T13 spinal segment. Unilateral spinal injured rats developed robust bilateral hindlimb mechanical allodynia and hyperexcitability of spinal wide dynamic range (WDR) neurons in the lumbar enlargement (L4-L5) compared to sham controls, which was attenuated by intrathecal (i.t.) administration of GABA, dose-dependently (0.01, 0.1, 0.5 microg). Western blotting and immunohistochemical data demonstrated that the expression level of GAD(65) protein significantly decreased on both sides of the lumbar dorsal horn (L4/5) after SCI (p<0.05). In addition, astrocytes and microglia showed soma hypertrophy as determined by increased soma area and increased GFAP and CD11b on both sides of the lumbar dorsal horn compared to sham controls, respectively (p<0.05). Intrathecal treatment with propentofylline (PPF 10 mM) significantly attenuated the astrocytic and microglial soma hypertrophy and mechanical allodynia (p<0.05). Additionally, the Western blotting and immunohistochemistry data demonstrated that i.t. treatment of PPF significantly prevented the decrease of GAD(65) expression in both sides of the lumbar dorsal horn following SCI (p<0.05). In conclusion, our present data demonstrate that propentofylline modulates glia activation and GABAergic inhibitory tone by modulation of GAD(65) protein expression following spinal cord injury.
Collapse
Affiliation(s)
- Young Seob Gwak
- Department of Neuroscience & Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555-1043, USA
| | | | | | | |
Collapse
|