1
|
Bjørkum AA, Griebel L, Birkeland E. Human serum proteomics reveals a molecular signature after one night of sleep deprivation. SLEEP ADVANCES : A JOURNAL OF THE SLEEP RESEARCH SOCIETY 2024; 5:zpae042. [PMID: 39131770 PMCID: PMC11310596 DOI: 10.1093/sleepadvances/zpae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 05/31/2024] [Indexed: 08/13/2024]
Abstract
Study Objectives Sleep deprivation is highly prevalent and caused by conditions such as night shift work or illnesses like obstructive sleep apnea. Compromised sleep affects cardiovascular-, immune-, and neuronal systems. Recently, we published human serum proteome changes after a simulated night shift. This pilot proteomic study aimed to further explore changes in human blood serum after 6 hours of sleep deprivation at night. Methods Human blood serum samples from eight self-declared healthy females were analyzed using Orbitrap Eclipse mass spectrometry (MS-MS) and high-pressure liquid chromatography. We used a within-participant design, in which the samples were taken after 6 hours of sleep at night and after 6 hours of sleep deprivation the following night. Systems biological databases and bioinformatic software were used to analyze the data and comparative analysis were done with other published sleep-related proteomic datasets. Results Out of 494 proteins, 66 were found to be differentially expressed proteins (DEPs) after 6 hours of sleep deprivation. Functional enrichment analysis revealed the associations of these DEPs with several biological functions related to the altered regulation of cellular processes such as platelet degranulation and blood coagulation, as well as associations with different curated gene sets. Conclusions This study presents serum proteomic changes after 6 hours of sleep deprivation, supports previous findings showing that short sleep deprivation affects several biological processes, and reveals a molecular signature of proteins related to pathological conditions such as altered coagulation and platelet function, impaired lipid and immune function, and cell proliferation. Data are available via ProteomeXchange with identifier PXD045729. This paper is part of the Genetic and other molecular underpinnings of sleep, sleep disorders, and circadian rhythms including translational approaches Collection.
Collapse
Affiliation(s)
- Alvhild Alette Bjørkum
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
| | - Leandra Griebel
- Department of Safety, Chemistry and Biomedical Laboratory Sciences, Western Norway University of Applied Sciences, Bergen, Norway
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Even Birkeland
- The Proteomics Unit at The Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
2
|
Zhang J, Guo Y, Jia T, Guo H, Meng F, Xue S. Alcohol dehydrogenase 2/aldehyde dehydrogenase 2 genetic polymorphisms in obstructive sleep apnea syndrome. Panminerva Med 2023; 65:120-121. [PMID: 31961111 DOI: 10.23736/s0031-0808.19.03776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jun Zhang
- Department of Otolaryngology, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Yuxia Guo
- Department of Respiratory, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Ting Jia
- Department of Gynaecology, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Hong Guo
- Health Management Center, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Fanchun Meng
- Delivery Room, the People's Hospital of Zhangqiu Area, Jinan, China
| | - Shuai Xue
- Department of Health Care, Qilu Hospital of Shandong University, Qingdao, China -
| |
Collapse
|
3
|
Advances in Molecular Pathology of Obstructive Sleep Apnea. Molecules 2022; 27:molecules27238422. [PMID: 36500515 PMCID: PMC9739159 DOI: 10.3390/molecules27238422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Obstructive sleep apnea (OSA) is a common syndrome that features a complex etiology and set of mechanisms. Here we summarized the molecular pathogenesis of OSA, especially the prospective mechanism of upper? airway dilator fatigue and the current breakthroughs. Additionally, we also introduced the molecular mechanism of OSA in terms of related studies on the main signaling pathways and epigenetics alterations, such as microRNA, long non-coding RNA, and DNA methylation. We also reviewed small molecular compounds, which are potential targets for gene regulations in the future, that are involved in the regulation of OSA. This review will be beneficial to point the way for OSA research within the next decade.
Collapse
|
4
|
Meszaros M, Bikov A. Obstructive Sleep Apnoea and Lipid Metabolism: The Summary of Evidence and Future Perspectives in the Pathophysiology of OSA-Associated Dyslipidaemia. Biomedicines 2022; 10:2754. [PMID: 36359273 PMCID: PMC9687681 DOI: 10.3390/biomedicines10112754] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 09/29/2023] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with cardiovascular and metabolic comorbidities, including hypertension, dyslipidaemia, insulin resistance and atherosclerosis. Strong evidence suggests that OSA is associated with an altered lipid profile including elevated levels of triglyceride-rich lipoproteins and decreased levels of high-density lipoprotein (HDL). Intermittent hypoxia; sleep fragmentation; and consequential surges in the sympathetic activity, enhanced oxidative stress and systemic inflammation are the postulated mechanisms leading to metabolic alterations in OSA. Although the exact mechanisms of OSA-associated dyslipidaemia have not been fully elucidated, three main points have been found to be impaired: activated lipolysis in the adipose tissue, decreased lipid clearance from the circulation and accelerated de novo lipid synthesis. This is further complicated by the oxidisation of atherogenic lipoproteins, adipose tissue dysfunction, hormonal changes, and the reduced function of HDL particles in OSA. In this comprehensive review, we summarise and critically evaluate the current evidence about the possible mechanisms involved in OSA-associated dyslipidaemia.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8091 Zurich, Switzerland
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| | - Andras Bikov
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9MT, UK
| |
Collapse
|
5
|
Ponomarenko MP, Chadaeva IV, Ponomarenko PM, Bogomolov AG, Oshchepkov DY, Sharypova EB, Suslov VV, Osadchuk AV, Osadchuk LV, Matushkin YG. A bioinformatic search for correspondence between differentially expressed genes of domestic versus wild animals and orthologous human genes altering reproductive potential. Vavilovskii Zhurnal Genet Selektsii 2022; 26:96-108. [PMID: 35342855 PMCID: PMC8894618 DOI: 10.18699/vjgb-22-13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
One of the greatest achievements of genetics in the 20th century is D.K. Belyaev’s discovery of destabilizing selection during the domestication of animals and that this selection affects only gene expression regulation (not gene structure) and inf luences systems of neuroendocrine control of ontogenesis in a stressful environment. Among the experimental data generalized by Belyaev’s discovery, there are also f indings about accelerated extinc tion of testes’ hormonal function and disrupted seasonality of reproduction of domesticated foxes in comparison
with their wild congeners. To date, Belyaev’s discovery has already been repeatedly conf irmed, for example, by independent
observations during deer domestication, during the use of rats as laboratory animals, after the reintroduction
of endangered species such as Przewalski’s horse, and during the creation of a Siberian reserve population
of the Siberian grouse when it had reached an endangered status in natural habitats. A genome-wide comparison
among humans, several domestic animals, and some of their wild congeners has given rise to the concept of self-domestication
syndrome, which includes autism spectrum disorders. In our previous study, we created a bioinformatic
model of human self-domestication syndrome using differentially expressed genes (DEGs; of domestic animals
versus their wild congeners) orthologous to the human genes (mainly, nervous-system genes) whose changes in
expression affect reproductive potential, i. e., growth of the number of humans in the absence of restrictions caused
by limiting factors. Here, we applied this model to 68 human genes whose changes in expression alter the reproductive
health of women and men and to 3080 DEGs of domestic versus wild animals. As a result, in domestic animals,
we identif ied 16 and 4 DEGs, the expression changes of which are codirected with changes in the expression of the
human orthologous genes decreasing and increasing human reproductive potential, respectively. The wild animals
had 9 and 11 such DEGs, respectively. This difference between domestic and wild animals was signif icant according
to Pearson’s χ2 test (p < 0.05) and Fisher’s exact test (p < 0.05). We discuss the results from the standpoint of restoration
of endangered animal species whose natural habitats are subject to an anthropogenic impact.
Collapse
Affiliation(s)
- M. P. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - I. V. Chadaeva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - P. M. Ponomarenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. G. Bogomolov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - D. Yu. Oshchepkov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - E. B. Sharypova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - V. V. Suslov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - A. V. Osadchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - L. V. Osadchuk
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - Yu. G. Matushkin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
6
|
Bikov A, Meszaros M, Schwarz EI. Coagulation and Fibrinolysis in Obstructive Sleep Apnoea. Int J Mol Sci 2021; 22:ijms22062834. [PMID: 33799528 PMCID: PMC8000922 DOI: 10.3390/ijms22062834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 12/29/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is a common disease which is characterised by repetitive collapse of the upper airways during sleep resulting in chronic intermittent hypoxaemia and frequent microarousals, consequently leading to sympathetic overflow, enhanced oxidative stress, systemic inflammation, and metabolic disturbances. OSA is associated with increased risk for cardiovascular morbidity and mortality, and accelerated coagulation, platelet activation, and impaired fibrinolysis serve the link between OSA and cardiovascular disease. In this article we briefly describe physiological coagulation and fibrinolysis focusing on processes which could be altered in OSA. Then, we discuss how OSA-associated disturbances, such as hypoxaemia, sympathetic system activation, and systemic inflammation, affect these processes. Finally, we critically review the literature on OSA-related changes in markers of coagulation and fibrinolysis, discuss potential reasons for discrepancies, and comment on the clinical implications and future research needs.
Collapse
Affiliation(s)
- Andras Bikov
- North West Lung Centre, Manchester University NHS Foundation Trust, Manchester M23 9LT, UK
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester M13 9MT, UK
- Correspondence: ; Tel.: +44-161-291-2493; Fax: +44-161-291-5730
| | - Martina Meszaros
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary;
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8006 Zurich, Switzerland;
| | - Esther Irene Schwarz
- Department of Pulmonology and Sleep Disorders Centre, University Hospital Zurich, 8006 Zurich, Switzerland;
- Centre of Competence Sleep & Health Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
7
|
Meszaros M, Horvath P, Kis A, Kunos L, Tarnoki AD, Tarnoki DL, Lazar Z, Bikov A. Circulating levels of clusterin and complement factor H in patients with obstructive sleep apnea. Biomark Med 2021; 15:323-330. [PMID: 33666516 DOI: 10.2217/bmm-2020-0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Obstructive sleep apnea (OSA) activates the complement system; however, the levels of membrane attack complex (MAC) are unaltered suggesting regulatory mechanisms. Our aim was to investigate complement factor H (CFH) and clusterin, two important complement regulators in OSA. Materials & methods: We analyzed clusterin and CFH levels in plasma of 86 patients with OSA and 33 control subjects. Results: There was no difference in CFH levels between patients (1099.4/784.6-1570.5/μg/ml) and controls (1051.4/652.0-1615.1/μg/ml, p = 0.72). Clusterin levels were higher in patients with OSA (309.7/217.2-763.2/μg/ml vs 276.1/131.0-424.3/μg/ml, p = 0.048) with a trend for a positive correlation with disease severity (p = 0.073). Conclusion: Increase in clusterin levels may be protective in OSA by blocking the MAC formation.
Collapse
Affiliation(s)
- Martina Meszaros
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Peter Horvath
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Adrian Kis
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Laszlo Kunos
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Adam D Tarnoki
- Department of Radiology, Oncologic Imaging Diagnostic Center, National Institute of Oncology, Budapest, Hungary.,Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - David L Tarnoki
- Department of Radiology, Oncologic Imaging Diagnostic Center, National Institute of Oncology, Budapest, Hungary.,Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Zsofia Lazar
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Andras Bikov
- Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK.,Division of Infection, Immunity & Respiratory Medicine, University of Manchester, UK
| |
Collapse
|
8
|
Barletta P, Abreu AR, Ramos AR, Dib SI, Torre C, Chediak AD. Role of Obstructive Sleep Apnea in Cognitive Impairment. INTERNATIONAL JOURNAL OF HEAD AND NECK SURGERY 2019; 10:57-61. [PMID: 34305353 PMCID: PMC8302067 DOI: 10.5005/jp-journals-10001-1373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA) is a prevalent sleep related breathing disorder characterized by repetitive collapse of the upper airways leading to intermittent hypoxia and sleep disruption. Clinically relevant neurocognitive, metabolic and cardiovascular disease often occurs in OSA. Systemic hypertension, coronary artery disease, type 2 diabetes mellitus, cerebral vascular infarctions and atrial fibrillation are among the most often cited conditions with causal connections to OSA. Emerging science suggest that untreated and undertreated OSA increases the risk of developing cognitive impairment, including vascular dementia and neurodegenerative disorders, like Alzheimer’s disease. As with OSA, cardiovascular disease and type 2 diabetes mellitus, the incidence of dementia increases with age. Given our rapidly aging population, dementia prevalence will significantly increase. The aim of this treatise is to review current literature linking OSA to dementia and explore putative mechanisms by which OSA might facilitate the development and progression of dementia.
Collapse
Affiliation(s)
- Pamela Barletta
- Sleep Disorders Center, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alexandre R Abreu
- Sleep Disorders Center, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alberto R Ramos
- Sleep Disorders Center, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Salim I Dib
- Sleep Disorders Center, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Carlos Torre
- Sleep Disorders Center, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA
| | - Alejandro D Chediak
- Sleep Disorders Center, Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
9
|
Liu Y, Gao L, Lv W, Lın L, Wang Y, Fıang F, Feng F. Pathologic and hemodynamic changes of common carotid artery in obstructive sleep apnea hypopnea syndrome in a porcine model. Turk J Med Sci 2019; 49:939-944. [PMID: 31195789 PMCID: PMC7018377 DOI: 10.3906/sag-1807-170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background/aim To prepare a porcine model of obstructive sleep apnea-hypopnea syndrome (OSAHS) and observe the pathological and hemodynamic changes in the common carotid artery. Materials and methods Twelve male miniature pigs were randomly divided into the model and control group (n = 6). Pigs in the model group were kept in an air-flow negative pressure chamber at 0.96 ± 0.01 kPa, and the air oxygen content, temperature, and humidity were kept at normal culture conditions in both groups. After pigs in the model group presented symptoms of OSAHS, changes in the hemodynamics and morphology of the carotid artery were analyzed using color Doppler, and light and electron microscopy. Results An animal model of OSAHS was successfully created. The internal diameter of the carotid artery of pigs in the model group was decreased, while the intima thickness, peak-systolic mean velocity, and resistance index were increased when compared to the control group (P < 0.05). The results of the light and electron microscopy revealed an incomplete elastic plate, increased media thickness, irregular morphology of the smooth muscle cells, increased collagen fiber bundles, partially disordered elastic fibers, and smooth muscle layers. The quantitative analysis showed significantly increased elastic fibers in the media of the carotid artery in the model group (P < 0.01). Conclusion Pathological changes in the tissue structure and hemodynamics in the negative pressure-induced pig OSAHS model were observed. We suggest that alterations in the upper airway pressure during OSAHS may lead to cardiovascular conditions through its pathological effects on the carotid artery.
Collapse
Affiliation(s)
- Yongyi Liu
- The Fourth Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Lu Gao
- Medical College of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Weinong Lv
- The Fourth Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Lin Lın
- The Fourth Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Yi Wang
- The Fourth Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Fan Fıang
- The Fourth Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China
| | - Fan Feng
- The Fourth Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, China,Medical College of Jiangsu University, Jiangsu University, Zhenjiang, China,The Huishan District Second People’s Hospital of Wuxi City, Wuxi, China
| |
Collapse
|
10
|
Baril AA, Carrier J, Lafrenière A, Warby S, Poirier J, Osorio RS, Ayas N, Dubé MP, Petit D, Gosselin N. Biomarkers of dementia in obstructive sleep apnea. Sleep Med Rev 2018; 42:139-148. [PMID: 30241998 PMCID: PMC8803351 DOI: 10.1016/j.smrv.2018.08.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 08/02/2018] [Accepted: 08/06/2018] [Indexed: 02/08/2023]
Abstract
Epidemiologic and mechanistic evidence is increasingly supporting the notion that obstructive sleep apnea is a risk factor for dementia. Hence, the identification of patients at risk of cognitive decline due to obstructive sleep apnea may significantly improve preventive strategies and treatment decision-making. Cerebrospinal fluid and blood biomarkers obtained through genomic, proteomic and metabolomic approaches are improving the ability to predict incident dementia. Therefore, fluid biomarkers have the potential to predict vulnerability to neurodegeneration in individuals with obstructive sleep apnea, as well as deepen our understanding of pathophysiological processes linking obstructive sleep apnea and dementia. Many fluid biomarkers linked to Alzheimer's disease and vascular dementia show abnormal levels in individuals with obstructive sleep apnea, suggesting that these conditions share common underlying mechanisms, including amyloid and tau protein neuropathology, inflammation, oxidative stress, and metabolic disturbances. Markers of these processes include amyloid-β, tau proteins, inflammatory cytokines, acute-phase proteins, antioxydants and oxidized products, homocysteine and clusterin (apolipoprotein J). Thus, these biomarkers may have the ability to identify adults with obstructive sleep apnea at high risk of dementia and provide an opportunity for therapeutic intervention. Large cohort studies are necessary to establish a specific fluid biomarker panel linking obstructive sleep apnea to dementia risk.
Collapse
Affiliation(s)
- Andrée-Ann Baril
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychology, Université de Montréal, Montreal, Canada
| | - Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychology, Université de Montréal, Montreal, Canada
| | - Simon Warby
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychiatry, Faculty of Medicine, Université de Montréal, Montreal, Canada
| | - Judes Poirier
- Centre for Studies on Prevention of Alzheimer's disease, Douglas Institute, Montreal, Canada; Departments of Psychiatry and Medicine, McGill University, Montreal, Canada
| | - Ricardo S Osorio
- Department of Psychiatry, Center for Brain Health, NYU Langone Medical Center, New York, USA
| | - Najib Ayas
- Division of Critical Care Medicine, Faculty of Medicine, University of British Columbia, Vancouver, Canada; Center for Health Evaluation & Outcomes Sciences, St. Paul Hospital, Vancouver, Canada
| | - Marie-Pierre Dubé
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montreal, Canada; Beaulieu-Saucier Pharmacogenomics Center, Montreal Heart Institute, Montreal, Canada
| | - Dominique Petit
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada; Department of Psychology, Université de Montréal, Montreal, Canada.
| |
Collapse
|
11
|
Yang X, Xiao Y, Han B, Lin K, Niu X, Chen X. Implication of mixed sleep apnea events in adult patients with obstructive sleep apnea-hypopnea syndrome. Sleep Breath 2018; 23:559-565. [PMID: 30343435 DOI: 10.1007/s11325-018-1745-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Although mixed sleep apnea (MSA) is one of the three types of sleep apnea, it is not considered a separate disease entity. It is generally seen as a part of obstructive sleep apnea-hypopnea syndrome (OSAHS), but its implications are often ignored. In this study, we examined its features and the potential impact on OSAHS patients. METHODS Subjects diagnosed with OSAHS by polysomnography (PSG) were enrolled. All participants underwent physical checkups and tests of blood biochemistry. They were anthropometrically, clinically, and polysomnographically studied. RESULTS MSA events were common in patients with severe OSAHS patients. There were significant differences between the pure OSAHS group and its mixed counterpart in apnea-hypopnea indices during REM (AHIREM) and non-REM (AHINREM) and in percentages of N2 or N3 sleep. Logistic regression analysis showed that, after adjustment of other parameters, patients with MSA events were mostly male, had higher body mass index (BMI), higher scores on Epworth Sleepiness Scales (ESS), higher triglyceride (TG) levels, and higher apnea-hypopnea index (AHI). The combined predictive probability of the aforementioned variables was 0.766 (95% CI = 0.725~0.806; sensitivity 61.6%, specificity 82.1%). CONCLUSIONS Our study suggested that MSA was related to the stability of the ventilatory control in OSAHS patients. MSA events occur more frequently in patients with severe OSAHS, and male gender, obesity, daytime sleepiness, and elevated TG levels were risk factors for the mixed OSAHS.
Collapse
Affiliation(s)
- Xiuping Yang
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ying Xiao
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Baoai Han
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Lin
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xun Niu
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiong Chen
- Department of Otolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
12
|
Dysfunction of Nrf2-ARE Signaling Pathway: Potential Pathogenesis in the Development of Neurocognitive Impairment in Patients with Moderate to Severe Obstructive Sleep Apnea-Hypopnea Syndrome. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:3529709. [PMID: 30159112 PMCID: PMC6109532 DOI: 10.1155/2018/3529709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/11/2018] [Accepted: 07/12/2018] [Indexed: 01/10/2023]
Abstract
The present study investigated the nuclear factor erythroid 2-related factor 2- (Nrf2-) antioxidant response element (ARE) signaling pathway in patients with moderate to severe obstructive sleep apnea-hypopnea syndrome (OSAHS). Their correlation with neurocognitive impairment metrics was investigated to explore potential pathogenesis in OSAHS. Forty-eight patients with OSAHS and 28 controls underwent testing with the Epworth Sleep Scale (ESS), MATRICS Consensus Cognitive Battery (MCCB), Stroop Color and Word Test, polysomnography (PSG), and measurements of the concentration of plasma superoxide dismutase (SOD) and thioredoxin (Trx). Further, 20 pairs of matched patients with OSAHS and controls were selected for measurement of the expression (protein and mRNA) of Nrf2 and of its downstream antioxidase, heme oxygenase-1 (HO-1), in peripheral mononuclear cells (PBMCs). Finally, correlations between neurocognitive impairment and the above metrics were analyzed. Expression of Nrf2 and HO-1 mRNA and protein in the PBMCs, as well as plasma SOD and Trx levels, were significantly reduced in patients with OSAHS. After adjusting for education, sex, age, and smoking index, the expression of Nrf2-ARE signaling pathway proteins (or mRNA) was closely correlated with sleep respiratory parameters. An inverse relationship was demonstrated between the expression of nuclear Nrf2 in PBMCs, concentration of plasma SOD and Trx, and apnea-hypopnea index (AHI) in patients with OSAHS. Trx, nuclear Nrf2 protein, and HO-1 protein were also negatively correlated with the percent of time that SaO2 was less than 90% (TSat90). Total Nrf2 protein level was positively correlated with AHI and TSat90 and negatively correlated with minimum SaO2 (LSaO2), while nuclear Nrf2 protein and HO-1 protein were positively correlated with LSaO2. Moreover, significant positive correlations were found between maze scores and expression of nuclear Nrf2 protein, HO-1 protein, and SOD and Trx levels. Furthermore, inverse relationships between total Nrf2 protein in PBMCs and HVLT-R and maze scores were found. Multiple linear regression showed plasma Trx concentration as a potential predictor of maze and BVMT-R scores. In conclusion, the expression of Nrf2-ARE molecules and related antioxidases is significantly decreased in patients with OSAHS and is correlated with neurocognitive dysfunction. The Nrf2-ARE signaling pathway may play a crucial role in neurocognitive impairment in patients with moderate to severe OSAHS. Further studies are needed to explore the exact mechanisms and potential treatment interventions.
Collapse
|