1
|
Wei Y, Wang P, Zhang Y, Miao P, Liu J, Wei S, Wang X, Wang Y, Wu L, Han S, Wei Y, Wang K, Cheng J, Wang C. Altered static and dynamic cerebellar-cerebral functional connectivity in acute pontine infarction. Cereb Cortex 2024; 34:bhae182. [PMID: 38741271 DOI: 10.1093/cercor/bhae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.
Collapse
Affiliation(s)
- Ying Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Peipei Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Peifang Miao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Sen Wei
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Xin Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Yingying Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, China
| | - Luobing Wu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
- Department of Radiology, The First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Kaiyu Wang
- GE Healthcare MR Research, Tongji South Road, Daxing District, Beijing 100176, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
2
|
Bu J, Yin H, Ren N, Zhu H, Xu H, Zhang R, Zhang S. Structural and functional changes in the default mode network in drug-resistant epilepsy. Epilepsy Behav 2024; 151:109593. [PMID: 38157823 DOI: 10.1016/j.yebeh.2023.109593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/25/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE To investigate brain network properties and connectivity abnormalities of the default mode network (DMN) in drug-resistant epilepsy (DRE). The study was based on probabilistic fiber tracking and functional connectivity (FC) analysis, to explore the structural and functional connectivity patterns change between frontal lobe epilepsy (FLE) and temporal lobe epilepsy (TLE). METHODS A total of 33 DRE patients (18 TLE and 15 FLE) and 30 healthy controls (HCs) were recruited. The volume fraction of the septal brain region of the DMN in DRE was calculated using FreeSurfer. The FC analysis was performed using Data Processing and Analysis for Brain Imaging in MATLAB. The structural connections between brain regions of the DMN were calculated based on probabilistic fiber tracking. RESULTS The left precuneus (PCUN) volumes in epilepsy groups were lower than that in HCs. Compared with FLE, TLE showed reduced FC between the left hippocampus (HIP) and PCUN/medial frontal gyrus, and between the right inferior parietal lobule (IPL) and right superior temporal gyrus. Compared with HCs, FLE showed increased FCs between the right IPL and occipital lobe, and between the left superior frontal gyrus (SFG) and bilateral superior temporal gyrus. In terms of structural connectivity, TLE exhibited increased connectivity strength between the left SFG and left PCUN, and showed reduced connection strength between the left HIP and left posterior cingulate gyrus/left PCUN, when compared with the FLE. CONCLUSIONS TLE and FLE patients showed structural and functional changes in the DMN. Compared with FLE patients, the TLE patients showed reduced structural and functional connection strengths between the left HIP and PCUN. These alterations in connection strengths holds promise for the identification of TLE and FLE.
Collapse
Affiliation(s)
- Jinxin Bu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Hangxing Yin
- Department of Neurology, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Nanxiao Ren
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Haitao Zhu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Honghao Xu
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Rui Zhang
- Department of Functional Neurosurgery, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Shugang Zhang
- Department of Neurology, Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
3
|
Tang F, Li L, Peng D, Yu J, Xin H, Tang X, Li K, Zeng Y, Xie W, Li H. Abnormal static and dynamic functional network connectivity in stable chronic obstructive pulmonary disease. Front Aging Neurosci 2022; 14:1009232. [PMID: 36325191 PMCID: PMC9618865 DOI: 10.3389/fnagi.2022.1009232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Objective Many studies have explored the neural mechanisms of cognitive impairment in chronic obstructive pulmonary disease (COPD) patients using the functional MRI. However, the dynamic properties of brain functional networks are still unclear. The purpose of this study was to explore the changes in dynamic functional network attributes and their relationship with cognitive impairment in stable COPD patients. Materials and methods The resting-state functional MRI and cognitive assessments were performed on 19 stable COPD patients and 19 age-, sex-, and education-matched healthy controls (HC). We conducted the independent component analysis (ICA) method on the resting-state fMRI data, and obtained seven resting-state networks (RSNs). After that, the static and dynamic functional network connectivity (sFNC and dFNC) were respectively constructed, and the differences of functional connectivity (FC) were compared between the COPD patients and the HC groups. In addition, the correlation between the dynamic functional network attributes and cognitive assessments was analyzed in COPD patients. Results Compared to HC, there were significant differences in sFNC among COPD patients between and within networks. COPD patients showed significantly longer mean dwell time and higher fractional windows in weaker connected State I than that in HC. Besides, in comparison to HC, COPD patients had more extensive abnormal FC in weaker connected State I and State IV, and less abnormal FC in stronger connected State II and State III, which were mainly located in the default mode network, executive control network, and visual network. In addition, the dFNC properties including mean dwell time and fractional windows, were significantly correlated with some essential clinical indicators such as FEV1, FEV1/FVC, and c-reactive protein (CRP) in COPD patients. Conclusion These findings emphasized the differences in sFNC and dFNC of COPD patients, which provided a new perspective for understanding the cognitive neural mechanisms, and these indexes may serve as neuroimaging biomarkers of cognitive performance in COPD patients.
Collapse
Affiliation(s)
- Fuqiu Tang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lan Li
- Department of Infection Management, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, China
| | - Dechang Peng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jingjing Yu
- Department of Respiratory and Critical Care, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Huizhen Xin
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Tang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kunyao Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaping Zeng
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wei Xie
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Haijun Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- PET Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Haijun Li,
| |
Collapse
|
4
|
Hao S, Duan Y, Qi L, Li Z, Ren J, Nangale N, Yang C. A resting-state fMRI study of temporal lobe epilepsy using multivariate pattern analysis and Granger causality analysis. J Neuroimaging 2022; 32:977-990. [PMID: 35670638 DOI: 10.1111/jon.13012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Understanding the pathogenesis of temporal lobe epilepsy (TLE) is essential for its diagnosis and treatment. The study aimed to explore regional homogeneity (ReHo) and changes in effective connectivity (EC) between brain regions in TLE patients, hoping to discover potential abnormalities in certain brain regions in TLE patients. METHODS Resting-state functional magnetic resonance data were collected from 23 TLE patients and 32 normal controls (NC). ReHo was used as a feature of multivariate pattern analysis (MVPA) to explore the ability of its alterations in identifying TLE. Based on the results of the MVPA, certain brain regions were selected as seed points to further explore alterations in EC between brain regions using Granger causality analysis. RESULTS MVPA results showed that the classification accuracy for the TLE and NC groups was 87.27%, and the right posterior cerebellum lobe, right lingual gyrus (LING_R), right cuneus (CUN_R), and left superior temporal gyrus (STG_L) provided significant contributions. Moreover, the EC from STG_L to right fusiform gyrus (FFG_R) and LING_R and the EC from CUN_R to the right occipital superior gyrus (SOG_R) and right occipital middle gyrus (MOG_R) were altered compared to the NC group. CONCLUSION The MVPA results indicated that ReHo abnormalities in brain regions may be an important feature in the identification of TLE. The enhanced EC from STG_L to FFG_R and LING_R indicates a shift in language processing to the right hemisphere, and the weakened EC from SOG_R and MOG_R to CUN_R may reveal an underlying mechanism of TLE.
Collapse
Affiliation(s)
- Siyao Hao
- Faculty of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| | - Ying Duan
- Beijing Universal Medical Imaging Diagnostic Center, Beijing, China
| | - Lei Qi
- Beijing Universal Medical Imaging Diagnostic Center, Beijing, China
| | - Zhimei Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jiechuan Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | | | - Chunlan Yang
- Faculty of Life Science and Bioengineering, Beijing University of Technology, Beijing, China
| |
Collapse
|
5
|
Ji Y, Shi L, Cheng Q, Fu WW, Zhong PP, Huang SQ, Chen XL, Wu XR. Abnormal Large-Scale Neuronal Network in High Myopia. Front Hum Neurosci 2022; 16:870350. [PMID: 35496062 PMCID: PMC9051506 DOI: 10.3389/fnhum.2022.870350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/14/2022] [Indexed: 11/16/2022] Open
Abstract
Aim Resting state functional magnetic resonance imaging (rs-fMRI) was used to analyze changes in functional connectivity (FC) within various brain networks and functional network connectivity (FNC) among various brain regions in patients with high myopia (HM). Methods rs-fMRI was used to scan 82 patients with HM (HM group) and 59 healthy control volunteers (HC group) matched for age, sex, and education level. Fourteen resting state networks (RSNs) were extracted, of which 11 were positive. Then, the FCs and FNCs of RSNs in HM patients were examined by independent component analysis (ICA). Results Compared with the HC group, FC in visual network 1 (VN1), dorsal attention network (DAN), auditory network 2 (AN2), visual network 3 (VN3), and sensorimotor network (SMN) significantly increased in the HM group. FC in default mode network 1 (DMN1) significantly decreased. Furthermore, some brain regions in default mode network 2 (DMN2), default mode network 3 (DMN3), auditory network 1 (AN1), executive control network (ECN), and significance network (SN) increased while others decreased. FNC analysis also showed that the network connection between the default mode network (DMN) and cerebellar network (CER) was enhanced in the HM group. Conclusion Compared with HCs, HM patients showed neural activity dysfunction within and between specific brain networks, particularly in the DMN and CER. Thus, HM patients may have deficits in visual, cognitive, and motor balance functions.
Collapse
|
6
|
Regional Alteration within the Cerebellum and the Reorganization of the Cerebrocerebellar System following Poststroke Aphasia. Neural Plast 2022; 2022:3481423. [PMID: 35360259 PMCID: PMC8964230 DOI: 10.1155/2022/3481423] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 02/24/2022] [Indexed: 12/26/2022] Open
Abstract
Recently, an increasing number of studies have highlighted the role of the cerebellum in language processing. However, the role of neural reorganization within the cerebellum as well as within the cerebrocerebellar system caused by poststroke aphasia remains unknown. To solve this problem, in the present study, we investigated regional alterations of the cerebellum as well as the functional reorganization of the cerebrocerebellar circuit by combining structural and resting-state functional magnetic resonance imaging (fMRI) techniques. Twenty patients diagnosed with aphasia following left-hemispheric stroke and 20 age-matched healthy controls (HCs) were recruited in this study. The Western Aphasia Battery (WAB) test was used to assess the participants' language ability. Gray matter volume, spontaneous brain activity, functional connectivity, and effective connectivity were examined in each participant. We discovered that gray matter volumes in right cerebellar lobule VI and right Crus I were significantly lower in the patient group, and the brain activity within these regions was significantly correlated with WAB scores. We also discovered decreased functional connectivity within the crossed cerebrocerebellar circuit, which was significantly correlated with WAB scores. Moreover, altered information flow between the cerebellum and the contralateral cerebrum was found. Together, our findings provide evidence for regional alterations within the cerebellum and the reorganization of the cerebrocerebellar system following poststroke aphasia and highlight the important role of the cerebellum in language processing within aphasic individuals after stroke.
Collapse
|
7
|
Hao S, Yang C, Li Z, Ren J. Distinguishing patients with temporal lobe epilepsy from normal controls with the directed graph measures of resting-state fMRI. Seizure 2022; 96:25-33. [DOI: 10.1016/j.seizure.2022.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/30/2022] Open
|
8
|
Wu J, Wu J, Guo R, Chu L, Li J, Zhang S, Ren H. The decreased connectivity in middle temporal gyrus can be used as a potential neuroimaging biomarker for left temporal lobe epilepsy. Front Psychiatry 2022; 13:972939. [PMID: 36032260 PMCID: PMC9399621 DOI: 10.3389/fpsyt.2022.972939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/08/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE We aimed to explore voxel-mirrored homotopic connectivity (VMHC) abnormalities between the two brain hemispheres in left temporal lobe epilepsy (lTLE) patients and to determine whether these alterations could be leveraged to guide lTLE diagnosis. MATERIALS AND METHODS Fifty-eight lTLE patients and sixty healthy controls (HCs) matched in age, sex, and education level were recruited to receive resting state functional magnetic resonance imaging (rs-fMRI) scan. Then VHMC analyses of bilateral brain regions were conducted based on the results of these rs-fMRI scans. The resultant imaging data were further analyzed using support vector machine (SVM) methods. RESULTS Compared to HCs, patients with lTLE exhibited decreased VMHC values in the bilateral middle temporal gyrus (MTG) and middle cingulum gyrus (MCG), while no brain regions in these patients exhibited increased VMHC values. SVM analyses revealed the diagnostic accuracy of reduced bilateral MTG VMHC values to be 75.42% (89/118) when differentiating between lTLE patients and HCs, with respective sensitivity and specificity values of 74.14% (43/58) and 76.67% (46/60). CONCLUSION Patients with lTLE exhibit abnormal VMHC values corresponding to the impairment of functional coordination between homotopic regions of the brain. These altered MTG VMHC values may also offer value as a robust neuroimaging biomarker that can guide lTLE patient diagnosis.
Collapse
Affiliation(s)
- Jinlong Wu
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China.,Key Laboratory of Occupational Hazards and Identification, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wu
- Department of Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruimin Guo
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Linkang Chu
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Jun Li
- Department of Neurosurgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sheng Zhang
- Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongwei Ren
- Department of Imaging Center, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Jiang S, Li H, Liu L, Yao D, Luo C. Voxel-wise functional connectivity of the default mode network in epilepsies: a systematic review and meta-analysis. Curr Neuropharmacol 2021; 20:254-266. [PMID: 33823767 PMCID: PMC9199542 DOI: 10.2174/1570159x19666210325130624] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/24/2021] [Accepted: 03/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background: Default Mode Network (DMN) is recognized to be involved in the generation and propagation of epileptic activities in various epilepsies. Converging evidence has suggested disturbed Functional Connectivity (FC) in epilepsies, which was inferred to be related to underlying pathological mechanisms. However, abnormal changes of FC in DMN revealed by different studies are controversial, which obscures the role of DMN in distinct epilepsies. Objective: The present work aims to investigate the voxel-wise FC in DMN across epilepsies. Methods: A systematic review was conducted on 22 published articles before October 2020, indexed in PubMed and Web of Science. A meta-analysis with a random-effect model was performed using the effect-size signed differential mapping approach. Subgroup analyses were performed in three groups: Idiopathic Generalized Epilepsy (IGE), mixed Temporal Lobe Epilepsy (TLE), and mixed Focal Epilepsy (FE) with different foci. Results: The meta-analysis suggested commonly decreased FC in mesial prefrontal cortices across different epilepsies. Additionally decreased FC in posterior DMN was observed in IGE. The TLE showed decreased FC in temporal lobe regions and increased FC in the dorsal posterior cingulate cortex. Interestingly, an opposite finding in the ventral and dorsal middle frontal gyrus was observed in TLE. The FE demonstrated increased FC in the cuneus.
Collapse
Affiliation(s)
- Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Linli Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731. China
| |
Collapse
|
10
|
Zhang Y, Huang G, Liu M, Li M, Wang Z, Wang R, Yang D. Functional and structural connective disturbance of the primary and default network in patients with generalized tonic-clonic seizures. Epilepsy Res 2021; 174:106595. [PMID: 33993017 DOI: 10.1016/j.eplepsyres.2021.106595] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 01/27/2023]
Abstract
OBJECTIVE The present study aims to investigate the disturbance of functional and structural profiles of patients with generalized tonic-clonic seizures (GTCS). METHODS Resting-state fMRI and diffusion tensor imaging (DTI) data was collected from fifty-six patients and sixty-two healthy controls. Degree centrality (DC) of functional connectivity was first calculated and compared between groups using a two-sample t-test. Furthermore, the regions with significant alteration of DC in patients with GTCS were used as nodes to construct the brain network. Functional connectivity (FC) network was constructed using the Person's correlation analysis and structural connectivity (SC) network was obtained using deterministic tractography technology. Gray matter volume (GMV) and cortical thickness (CT) were computed and correlated with connective profiles. RESULTS The patients with GTCS showed increased DC in the primary network (PN), including bilateral precentral gyrus, supplementary motor areas (SMA), and visual cortex, and decreased DC in core regions of default mode network (DMN), bilateral anterior insular, and supramarginal gyrus. In the present study, 14 regions were identified to construct networks. In patients, the FC and SC were increased within the sensorimotor network (mainly linking with SMA) and decreased within DMN (mainly linking with the posterior cingulate cortex (PCC)). Except for the decreased FC and SC between cerebellum and SMA, patients demonstrated increased connectivity between DMN and PN. Besides, the insula demonstrated decreased FC with DMN and increased FC with PN, without significant SC alterations in patients with GTCS. Decreased GMV in bilateral thalamus and increased GMV in frontoparietal regions were found in patients. The decreased GMV of thalamus and increased GMV of SMA positively and negatively correlated with the FC between PCC and left superior frontal cortex, the FC between SMA and left precuneus respectively. CONCLUSION Hyper-connectivity within PN helps to understand the disturbance of primary functions, especially the motor abnormality in GTCS. The hypo-connectivity within DMN suggested abnormal network organization possibly related to epileptogenesis. Moreover, over-interaction between DMN and PN and unbalanced connectivity between them and insula provided potential evidence reflecting abnormal interactions between primary and high-order function systems.
Collapse
Affiliation(s)
- Yaodan Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; Chengdu University of Traditional Chinese Medicine Affiliated Fifth People's Hospital, Chengdu, PR China
| | - Gengzhen Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Meijun Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Mao Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zhiqiang Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Rongyu Wang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dongdong Yang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
11
|
Xu W, Chen S, Xue C, Hu G, Ma W, Qi W, Lin X, Chen J. Functional MRI-Specific Alterations in Executive Control Network in Mild Cognitive Impairment: An ALE Meta-Analysis. Front Aging Neurosci 2020; 12:578863. [PMID: 33192472 PMCID: PMC7581707 DOI: 10.3389/fnagi.2020.578863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Mild cognitive impairment (MCI) is regarded as a transitional stage between normal aging and Alzheimer's disease (AD) dementia. MCI individuals with deficits in executive function are at higher risk for progressing to AD dementia. Currently, there is no consistent result for alterations in the executive control network (ECN) in MCI, which makes early prediction of AD conversion difficult. The aim of the study was to find functional MRI-specific alterations in ECN in MCI patients by expounding on the convergence of brain regions with functional abnormalities in ECN. Methods: We searched PubMed, Embase, and Web of Science to identify neuroimaging studies using methods including the amplitude of low frequency fluctuation/fractional amplitude of low-frequency fluctuation, regional homogeneity, and functional connectivity in MCI patients. Based on the Activation Likelihood Estimation algorithm, the coordinate-based meta-analysis and functional meta-analytic connectivity modeling were conducted. Results: A total of 25 functional imaging studies with MCI patients were included in a quantitative meta-analysis. By summarizing the included articles, we obtained specific brain region changes, mainly including precuneus, cuneus, lingual gyrus, middle frontal gyrus, posterior cingulate cortex, and cerebellum posterior lobe, in the ECN based on these three methods. The specific abnormal brain regions indicated that there were interactions between the ECN and other networks. Conclusions: This study confirms functional imaging specific abnormal markers in ECN and its interaction with other networks in MCI. It provides novel targets and pathways for individualized and precise interventions to delay the progression of MCI to AD.
Collapse
Affiliation(s)
- Wenwen Xu
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shanshan Chen
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Chen Xue
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Guanjie Hu
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China
| | - Wenying Ma
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenzhang Qi
- Department of Radiology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xingjian Lin
- Department of Neurology, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jiu Chen
- Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, China.,Institute of Neuropsychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
12
|
Zhu J, Wang J, Xu C, Zhang X, Qiao L, Wang X, Zhang X, Yan X, Ni D, Yu T, Zhang G, Li Y. The functional connectivity study on the brainstem-cortical/subcortical structures in responders following cervical vagus nerve stimulation. Int J Dev Neurosci 2020; 80:679-686. [PMID: 32931055 DOI: 10.1002/jdn.10064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/14/2020] [Accepted: 09/01/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Cervical vagus nerve stimulation (VNS) is an effective neuromodulation therapy for patients with drug-resistant epilepsy (DRE). The previous studies reported that VNS may reduce seizures by regulating the functional connectivity (FC) between cortical and subcortical regions. However, no studies on brainstem have been done in responders who achieved ≥50% seizure reduction following VNS. METHODS Eight healthy controls and eight patients who became responders after 3 months of operation were enrolled in this study. Resting-state functional MRI (rs-fMRI) was performed, and two sample and paired sample t test were, respectively, used to detect altered FC between brainstem and cortical/subcortical regions between controls and patients, between preoperative and postoperative patients. RESULTS In the control group, regions with highest FC to brainstem included bilateral anterior cingulate gyri, left basal ganglia, left insula, left cuneus, right precuneus, and bilateral cerebellum. In preoperative patients, right frontal middle gyrus, bilateral basal ganglia, and right cerebellum were showed highest FC to brainstem. Compared with the controls, preoperative patients exhibited increased FC in bilateral inferior frontal gyri, right temporal cortex, while decreased FC in left insula, left postcentral gyrus, right posterior cingulate gyrus, right precuneus, and left superior parietal gyrus. In postoperative patients, regions with increased FC to brainstem were left insula, left precuneus and left cuneus, and those with decreased FC were right inferior occipital gyrus and right cerebellum. CONCLUSIONS Recurrent seizures caused disturbances in brainstem-cortical/subcortical FC, especially in motor executive function related regions and default mode network. VNS could reorganize the altered FC between brainstem and insula, precuneus, and cerebellum in responders.
Collapse
Affiliation(s)
- Jin Zhu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Jingjuan Wang
- Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cuiping Xu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xi Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liang Qiao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueyuan Wang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xiaoming Yan
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Duanyu Ni
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongjie Li
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|