1
|
Wang R, Zhan Y, Zhu W, Yang Q, Pei J. Association of soluble TREM2 with Alzheimer's disease and mild cognitive impairment: a systematic review and meta-analysis. Front Aging Neurosci 2024; 16:1407980. [PMID: 38841103 PMCID: PMC11150578 DOI: 10.3389/fnagi.2024.1407980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/03/2024] [Indexed: 06/07/2024] Open
Abstract
Objective Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) is a potential neuroinflammatory biomarker linked to the pathogenesis of Alzheimer's disease (AD) and mild cognitive impairment (MCI). Previous studies have produced inconsistent results regarding sTREM2 levels in various clinical stages of AD. This study aims to establish the correlation between sTREM2 levels and AD progression through a meta-analysis of sTREM2 levels in cerebrospinal fluid (CSF) and blood. Methods Comprehensive searches were conducted in PubMed, Embase, Web of Science, and the Cochrane Library to identify observational studies reporting CSF and blood sTREM2 levels in AD patients, MCI patients, and healthy controls. A random effects meta-analysis was used to calculate the standardized mean difference (SMD) and 95% confidence intervals (CIs). Results Thirty-six observational studies involving 3,016 AD patients, 3,533 MCI patients, and 4,510 healthy controls were included. CSF sTREM2 levels were significantly higher in both the AD [SMD = 0.28, 95% CI (0.15, 0.41)] and MCI groups [SMD = 0.30, 95% CI (0.13, 0.47)] compared to the healthy control group. However, no significant differences in expression were detected between the AD and MCI groups [SMD = 0.09, 95% CI (-0.09, 0.26)]. Furthermore, increased plasma sTREM2 levels were associated with a higher risk of AD [SMD = 0.42, 95% CI (0.01, 0.83)]. Conclusion CSF sTREM2 levels are positively associated with an increased risk of AD and MCI. Plasma sTREM2 levels were notably higher in the AD group than in the control group and may serve as a promising biomarker for diagnosing AD. However, sTREM2 levels are not effective for distinguishing between different disease stages of AD. Further investigations are needed to explore the longitudinal changes in sTREM2 levels, particularly plasma sTREM2 levels, during AD progression. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42024514593.
Collapse
Affiliation(s)
| | | | | | | | - Jian Pei
- Department of Acupuncture, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Shi Q, Gutierrez RA, Bhat MA. Microglia, Trem2, and Neurodegeneration. Neuroscientist 2024:10738584241254118. [PMID: 38769824 DOI: 10.1177/10738584241254118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Microglia are a specialized type of neuroimmune cells that undergo morphological and molecular changes through multiple signaling pathways in response to pathological protein aggregates, neuronal death, tissue injury, or infections. Microglia express Trem2, which serves as a receptor for a multitude of ligands enhancing their phagocytic activity. Trem2 has emerged as a critical modulator of microglial activity, especially in many neurodegenerative disorders. Human TREM2 mutations are associated with an increased risk of developing Alzheimer disease (AD) and other neurodegenerative diseases. Trem2 plays dual roles in neuroinflammation and more specifically in disease-associated microglia. Most recent developments on the molecular mechanisms of Trem2, emphasizing its role in uptake and clearance of amyloid β (Aβ) aggregates and other tissue debris to help protect and preserve the brain, are encouraging. Although Trem2 normally stimulates defense mechanisms, its dysregulation can intensify inflammation, which poses major therapeutic challenges. Recent therapeutic approaches targeting Trem2 via agonistic antibodies and gene therapy methodologies present possible avenues for reducing the burden of neurodegenerative diseases. This review highlights the promise of Trem2 as a therapeutic target, especially for Aβ-associated AD, and calls for more mechanistic investigations to understand the context-specific role of microglial Trem2 in developing effective therapies against neurodegenerative diseases.
Collapse
Affiliation(s)
- Qian Shi
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Raul A Gutierrez
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Manzoor A Bhat
- Department of Cellular and Integrative Physiology, Center for Biomedical Neuroscience, Joe R. and Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Komine O, Ohnuma S, Hinohara K, Hara Y, Shimada M, Akashi T, Watanabe S, Sobue A, Kawade N, Ogi T, Yamanaka K. Genetic background variation impacts microglial heterogeneity and disease progression in amyotrophic lateral sclerosis model mice. iScience 2024; 27:108872. [PMID: 38318390 PMCID: PMC10839647 DOI: 10.1016/j.isci.2024.108872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 11/07/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Recent single-cell analyses have revealed the complexity of microglial heterogeneity in brain development, aging, and neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Disease-associated microglia (DAMs) have been identified in ALS mice model, but their role in ALS pathology remains unclear. The effect of genetic background variations on microglial heterogeneity and functions remains unknown. Herein, we established and analyzed two mice models of ALS with distinct genetic backgrounds of C57BL/6 and BALB/c. We observed that the change in genetic background from C57BL/6 to BALB/c affected microglial heterogeneity and ALS pathology and its progression, likely due to the defective induction of neurotrophic factor-secreting DAMs and impaired microglial survival. Single-cell analyses of ALS mice revealed new markers for each microglial subtype and a possible association between microglial heterogeneity and systemic immune environments. Thus, we highlighted the role of microglia in ALS pathology and importance of genetic background variations in modulating microglial functions.
Collapse
Affiliation(s)
- Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Syuhei Ohnuma
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Kunihiko Hinohara
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi, Japan
- Center for 5D Cell Dynamics, Nagoya University, Nagoya, Aichi, Japan
| | - Yuichiro Hara
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Mayuko Shimada
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Tomohiro Akashi
- Center for 5D Cell Dynamics, Nagoya University, Nagoya, Aichi, Japan
- Center for Neurological Disease and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Noe Kawade
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Human Genetics and Molecular Biology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya University, Nagoya, Aichi, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Aichi, Japan
| |
Collapse
|