Li JX, Zhang YQ. Mechanically Robust Poly(vinyl alcohol)-Egg White Composite Hydrogel with Enhancing Biocompatibility by Unidirectional Nanopore Dehydration.
ACS OMEGA 2023;
8:33763-33773. [PMID:
37744826 PMCID:
PMC10515601 DOI:
10.1021/acsomega.3c04171]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023]
Abstract
A simple and green method, unidirectional nanopore dehydration (UND), directly processes 10% poly(vinyl alcohol) (PVA) aqueous solution containing 20% egg white (EW) into a composite hydrogel membrane (PVA-EW). The tensile strength and elongation of the UND-based PVA-EW at 25 °C were 0.91 MPa and 534.17%, respectively, while the two values at 70 °C were increased by 700 and 38%, respectively. The PVA-EW (70 °C) was still dominated by random coils and α-helical structures. The hydroxyl groups of intramolecules and intermolecules of both PVA and EW could be able to combine and form either more hydrogen bonds or stronger hydrogen bonds. PVA-EW is soft and translucent, has good mechanical properties, and has a porous networked structure with pores that have a diameter of 1-10 μm. L-929 mouse fibroblasts were found to be able to adhere, grow, and proliferate well on the hydrogel composite membrane. This novel PVA-EW biomaterial has potential applications in biomaterials especially medical tissue engineering.
Collapse