1
|
Feng J, Hung TM, Huang R, Hou S, Ren J. Role of Proprioception in Slow and Rapid Movements. Percept Mot Skills 2019; 127:281-298. [PMID: 31856659 DOI: 10.1177/0031512519895632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study aimed to compare the contributions of sources of proprioception to the reproduction accuracy of relatively slower and more rapid arm movements. We recruited 34 volunteers and gave them dart throwing tasks under two different durations followed by joint position sense (JPS) tests and force sense (FS) tests at the elbow and the wrist. We found moderately positive correlations between slow movement performance and proprioceptive acuity with FS (wrist) and JPS (elbow), accounting for 52% of the absolute errors ( p < .001), and, with FS (wrist), accounting for 50% of the variable error ( p < .001). Moreover, we observed a smaller correlation between rapid movement performance and proprioceptive acuity, accounting for 17% of absolute errors with JPS (elbow; p = .008) and 11% of variable error ( p = .033). These results suggest that relatively slow movement performance is partly determined by performers’ proprioceptive acuity of the movement-related limbs. Relatively rapid movement performance is also affected by correctional proprioceptive feedback, though to a lesser degree.
Collapse
Affiliation(s)
- Jie Feng
- School of Kinesiology, Shanghai University of Sport, China.,Department of Sport and Physical Education, Hong Kong Baptist University, China
| | - Tsung-Min Hung
- Department of Physical Education, National Taiwan Normal University, Taiwan
| | - Rui Huang
- School of Kinesiology, Shanghai University of Sport, China
| | - Shuang Hou
- China Table Tennis College, Shanghai University of Sport, China
| | - Jie Ren
- China Table Tennis College, Shanghai University of Sport, China
| |
Collapse
|
2
|
Matsui H, Ryu M, Kawabata H. Visual Feedback of Target Position Affects Accuracy of Sequential Movements at Even Spaces. J Mot Behav 2017; 50:689-696. [PMID: 29236615 DOI: 10.1080/00222895.2017.1407744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The role of visual feedback during movement is attributed to its accuracy, but findings regarding the utilization of this information are inconsistent. We developed a novel dot-placing task to investigate the role of vision in arm movements. Participants conducted pointing-like movements between two target stimuli at even spaces. In Experiment 1, visual feedback of targets and response positions was manipulated. Although visual loss of target stimuli hindered accuracy of movements, the absence of the position of previously placed dots had little effect. In Experiment 2, the effect of movement time on accuracy was assessed, as the relationship between these has been traditionally understood as a speed/accuracy trade-off. Results revealed that duration of movement did not impact movement accuracy.
Collapse
Affiliation(s)
- Hiroshi Matsui
- a Department of Psychology , Keio University , Tokyo , Japan
| | - Marika Ryu
- a Department of Psychology , Keio University , Tokyo , Japan
| | | |
Collapse
|
3
|
Rizzo JR, Hosseini M, Wong EA, Mackey WE, Fung JK, Ahdoot E, Rucker JC, Raghavan P, Landy MS, Hudson TE. The Intersection between Ocular and Manual Motor Control: Eye-Hand Coordination in Acquired Brain Injury. Front Neurol 2017; 8:227. [PMID: 28620341 PMCID: PMC5451505 DOI: 10.3389/fneur.2017.00227] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/11/2017] [Indexed: 11/13/2022] Open
Abstract
Acute and chronic disease processes that lead to cerebral injury can often be clinically challenging diagnostically, prognostically, and therapeutically. Neurodegenerative processes are one such elusive diagnostic group, given their often diffuse and indolent nature, creating difficulties in pinpointing specific structural abnormalities that relate to functional limitations. A number of studies in recent years have focused on eye-hand coordination (EHC) in the setting of acquired brain injury (ABI), highlighting the important set of interconnected functions of the eye and hand and their relevance in neurological conditions. These experiments, which have concentrated on focal lesion-based models, have significantly improved our understanding of neurophysiology and underscored the sensitivity of biomarkers in acute and chronic neurological disease processes, especially when such biomarkers are combined synergistically. To better understand EHC and its connection with ABI, there is a need to clarify its definition and to delineate its neuroanatomical and computational underpinnings. Successful EHC relies on the complex feedback- and prediction-mediated relationship between the visual, ocular motor, and manual motor systems and takes advantage of finely orchestrated synergies between these systems in both the spatial and temporal domains. Interactions of this type are representative of functional sensorimotor control, and their disruption constitutes one of the most frequent deficits secondary to brain injury. The present review describes the visually mediated planning and control of eye movements, hand movements, and their coordination, with a particular focus on deficits that occur following neurovascular, neurotraumatic, and neurodegenerative conditions. Following this review, we also discuss potential future research directions, highlighting objective EHC as a sensitive biomarker complement within acute and chronic neurological disease processes.
Collapse
Affiliation(s)
- John-Ross Rizzo
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States.,Department of Neurology, New York University Langone Medical Center, New York, NY, United States
| | - Maryam Hosseini
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Eric A Wong
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Wayne E Mackey
- Department of Psychology and Center for Neural Science, New York University, New York, NY, United States
| | - James K Fung
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Edmond Ahdoot
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Janet C Rucker
- Department of Neurology, New York University Langone Medical Center, New York, NY, United States.,Department of Ophthalmology, New York University Langone Medical Center, New York, NY, United States
| | - Preeti Raghavan
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States
| | - Michael S Landy
- Department of Psychology and Center for Neural Science, New York University, New York, NY, United States
| | - Todd E Hudson
- Department of Rehabilitation Medicine, New York University Langone Medical Center, New York, NY, United States.,Department of Neurology, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
4
|
Blouin J, Saradjian AH, Lebar N, Guillaume A, Mouchnino L. Opposed optimal strategies of weighting somatosensory inputs for planning reaching movements toward visual and proprioceptive targets. J Neurophysiol 2014; 112:2290-301. [DOI: 10.1152/jn.00857.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Behavioral studies have suggested that the brain uses a visual estimate of the hand to plan reaching movements toward visual targets and somatosensory inputs in the case of somatosensory targets. However, neural correlates for distinct coding of the hand according to the sensory modality of the target have not yet been identified. Here we tested the twofold hypothesis that the somatosensory input from the reaching hand is facilitated and inhibited, respectively, when planning movements toward somatosensory (unseen fingers) or visual targets. The weight of the somatosensory inputs was assessed by measuring the amplitude of the somatosensory evoked potential (SEP) resulting from vibration of the reaching finger during movement planning. The target sensory modality had no significant effect on SEP amplitude. However, Spearman's analyses showed significant correlations between the SEPs and reaching errors. When planning movements toward proprioceptive targets without visual feedback of the reaching hand, participants showing the greater SEPs were those who produced the smaller directional errors. Inversely, participants showing the smaller SEPs when planning movements toward visual targets with visual feedback of the reaching hand were those who produced the smaller directional errors. No significant correlation was found between the SEPs and radial or amplitude errors. Our results indicate that the sensory strategy for planning movements is highly flexible among individuals and also for a given sensory context. Most importantly, they provide neural bases for the suggestion that optimization of movement planning requires the target and the reaching hand to both be represented in the same sensory modality.
Collapse
Affiliation(s)
- Jean Blouin
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| | - Anahid H. Saradjian
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| | - Nicolas Lebar
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| | - Alain Guillaume
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| | - Laurence Mouchnino
- Laboratory of Cognitive Neuroscience, CNRS, Aix-Marseille University, FR 3C 3512, Marseille, France
| |
Collapse
|
5
|
Sarlegna FR, Mutha PK. The influence of visual target information on the online control of movements. Vision Res 2014; 110:144-54. [PMID: 25038472 DOI: 10.1016/j.visres.2014.07.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 11/25/2022]
Abstract
The continuously changing properties of our environment require constant monitoring of our actions and updating of our motor commands based on the task goals. Such updating relies upon our predictions about the sensory consequences of our movement commands, as well as sensory feedback received during movement execution. Here we focus on how visual information about target location is used to update and guide ongoing actions so that the task goal is successfully achieved. We review several studies that have manipulated vision of the target in a variety of ways, ranging from complete removal of visual target information to changes in visual target properties after movement onset to examine how such changes are accounted for during motor execution. We also examined the specific role of a critical neural structure, the parietal cortex, and argue that a fundamental challenge for the future is to understand how visual information about target location is integrated with other streams of information, during movement execution, to estimate the state of the body and the environment in order to ensure optimal motor performance.
Collapse
Affiliation(s)
| | - Pratik K Mutha
- Indian Institute of Technology Gandhinagar, Ahmedabad 382424, Gujarat, India
| |
Collapse
|
6
|
Gaveau V, Pisella L, Priot AE, Fukui T, Rossetti Y, Pélisson D, Prablanc C. Automatic online control of motor adjustments in reaching and grasping. Neuropsychologia 2013; 55:25-40. [PMID: 24334110 DOI: 10.1016/j.neuropsychologia.2013.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 11/16/2013] [Accepted: 12/04/2013] [Indexed: 11/16/2022]
Abstract
Following the princeps investigations of Marc Jeannerod on action-perception, specifically, goal-directed movement, this review article addresses visual and non-visual processes involved in guiding the hand in reaching or grasping tasks. The contributions of different sources of correction of ongoing movements are considered; these include visual feedback of the hand, as well as the often-neglected but important spatial updating and sharpening of goal localization following gaze-saccade orientation. The existence of an automatic online process guiding limb trajectory toward its goal is highlighted by a series of princeps experiments of goal-directed pointing movements. We then review psychophysical, electrophysiological, neuroimaging and clinical studies that have explored the properties of these automatic corrective mechanisms and their neural bases, and established their generality. Finally, the functional significance of automatic corrective mechanisms-referred to as motor flexibility-and their potential use in rehabilitation are discussed.
Collapse
Affiliation(s)
- Valérie Gaveau
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Laure Pisella
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Anne-Emmanuelle Priot
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Institut de recherche biomédicale des armées (IRBA), BP 73, 91223 Brétigny-sur-Orge cedex, France
| | - Takao Fukui
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France
| | - Yves Rossetti
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Denis Pélisson
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France
| | - Claude Prablanc
- INSERM, U1028, CNRS, UMR5292, Lyon Neurosciences Research Center, ImpAct, 16 avenue du doyen Lépine, 69676 Bron cedex, France; Université Lyon 1, Villeurbanne, France.
| |
Collapse
|
7
|
Battaglia-Mayer A, Ferrari-Toniolo S, Visco-Comandini F, Archambault PS, Saberi-Moghadam S, Caminiti R. Impairment of online control of hand and eye movements in a monkey model of optic ataxia. ACTA ACUST UNITED AC 2012; 23:2644-56. [PMID: 22918983 DOI: 10.1093/cercor/bhs250] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The parietal mechanisms for online control of hand trajectory were studied by combining single-cell recording and reversible inactivation of superior parietal area 5 (PE/PEc; SPL) of monkeys while these made reaches and saccades to visual targets, when the target position changed unexpectedly. Neural activity was modulated by hand position, speed, and movement direction, and by pre- and/or postsaccadic signals. After bilateral muscimol injection, an increase in the hand reaction- and movement-time toward both the first and second targets was observed. This caused an increase in the time necessary for the trajectory correction, and therefore an elongation of the hand-path toward the first target location. Furthermore, hand trajectories were different in shape than control ones. An elongation of the eye reaction time to both first and second targets was also observed, which could partially explain the deficit of planning and correction of hand movement. These results identify the superior parietal lobule as a crucial node in the online control of hand and eye movement and highlight the role of the eye impairment in the emergence of the reaching disorder so far regarded as the hallmark of optic ataxia.
Collapse
|
8
|
Pointing to double-step visual stimuli from a standing position: motor corrections when the speed–accuracy trade-off is unexpectedly modified in-flight. A breakdown of the perception–action coupling. Neuroscience 2011; 194:124-35. [DOI: 10.1016/j.neuroscience.2011.07.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/15/2011] [Accepted: 07/15/2011] [Indexed: 11/19/2022]
|
9
|
d'Avella A, Portone A, Lacquaniti F. Superposition and modulation of muscle synergies for reaching in response to a change in target location. J Neurophysiol 2011; 106:2796-812. [PMID: 21880939 DOI: 10.1152/jn.00675.2010] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have recently shown that the muscle patterns for reaching are well described by the combination of a few time-varying muscle synergies supporting the notion of a modular architecture for arm control. Here we investigated whether the muscle patterns for reaching movements involving online corrections are also generated by the combination of the same set of time-varying muscle synergies used for point-to-point movements. We recorded endpoint kinematics and EMGs from up to 16 arm muscles of 5 subjects reaching from a central location to 8 peripheral targets in the frontal plane, from each peripheral target to 1 of the 2 adjacent targets, and from the central location initially to 1 peripheral target and, after a delay of either 50, 150, or 250 ms from the go signal, to 1 of the 2 adjacent targets. Time-varying muscle synergies were extracted from the averaged, phasic, normalized EMGs of point-to-point movements and fit to the patterns of target change movements using an iterative optimization algorithm. In all subjects, three time-varying muscle synergies explained a large fraction of the data variation of point-to-point movements. The superposition and modulation of the same three synergies reconstructed the muscle patterns for target change movements better than the superposition and modulation of the corresponding point-to-point muscle patterns, appropriately aligned. While at the kinematic level the corrective trajectory for reaching during a change in target location can be obtained by the delayed superposition of the trajectory from the initial to the final target, at the muscle level the underlying phasic muscle patterns are captured by the amplitude and timing modulation of the same time-varying muscle synergies recruited for point-to-point movements. These results suggest that a common modular architecture is used for the control of unperturbed arm movement and for its visually guided online corrections.
Collapse
Affiliation(s)
- Andrea d'Avella
- Laboratory of Neuromotor Physiology, Santa Lucia Foundation, Italy.
| | | | | |
Collapse
|
10
|
Archambault PS, Ferrari-Toniolo S, Battaglia-Mayer A. Online control of hand trajectory and evolution of motor intention in the parietofrontal system. J Neurosci 2011; 31:742-52. [PMID: 21228183 PMCID: PMC6623434 DOI: 10.1523/jneurosci.2623-10.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 10/17/2010] [Accepted: 10/22/2010] [Indexed: 11/21/2022] Open
Abstract
The frontal mechanisms of motor intention were studied in dorsal premotor and motor cortex of monkeys making direct reaches to visual targets and online corrections of hand trajectory, whenever a change of the target's location occurred. This study and our previous one of parietal cortex (Archambault et al., 2009) provide a picture on the evolution of motor intention and online control of movement in the parietofrontal system. In frontal cortex, significant relationships were found between neural activity and hand kinematics (position, speed, and movement direction). When a change of motor intention occurred, the activity typical of the movement to the first target smoothly evolved into that associated with the movement toward the second one, as observed during direct reaches. Under these conditions, parietal cells remained a more accurate predictor of hand trajectory than frontal ones. The time lags of neural activity with hand kinematics showed that motor, premotor, and parietal cortex were activated sequentially. After the first target's presentation and its change of location, the population activity signaled the change of motor plan before the hand moved to the initial target's position. This signaling occurred earlier in premotor than in motor and parietal cortex. Thus, premotor cortex encodes a higher-order command for the correction of motor intention, while parietal cortex seems responsible for estimating the kinematics of the motor periphery, an essential step to allow motor cortex to modify the hand trajectory. This indicates that the parietofrontal system can update an original and not-yet-accomplished motor plan during its execution.
Collapse
Affiliation(s)
- Philippe S. Archambault
- Department of Physiology and Pharmacology, Sapienza, University of Rome, 00185 Rome, Italy, and
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec H3G 1Y5, Canada
| | - Simone Ferrari-Toniolo
- Department of Physiology and Pharmacology, Sapienza, University of Rome, 00185 Rome, Italy, and
| | | |
Collapse
|
11
|
Cressman EK, Cameron BD, Lam MY, Franks IM, Chua R. Movement duration does not affect automatic online control. Hum Mov Sci 2010; 29:871-81. [PMID: 20800916 DOI: 10.1016/j.humov.2010.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 07/05/2010] [Accepted: 07/06/2010] [Indexed: 11/25/2022]
Abstract
Pisella et al. (2000) have shown that fast aiming movements are automatically modified on-line in response to a change in target position. Specifically, when a movement is less than 300ms in duration the reach is completed to a target's new location even when one never intended to respond to the target jump. In contrast, when movements are slower, the reach is completed according to instructions. At present, it is unclear if it is possible for one's intentions to guide the initial stages of these slow movements. To determine if the intentional control mechanism can guide the initial stages of a slow aiming movement, participants aimed to targets that could jump at movement onset, with a slow and very slow movement time goal. In particular, participants were to point towards ("pro-point") or away from ("anti-point") the target jump, with a movement time goal of 500 or 1200ms. Results showed that in the anti-point condition, movement trajectories first deviated in the same direction as the target jump, followed by a response in the intended (opposite) direction. This suggests that while movement outcome is controlled by the intentional system, even in these slow aiming movements the automatic system is engaged at movement onset.
Collapse
|
12
|
Fautrelle L, Ballay Y, Bonnetblanc F. Muscular synergies during motor corrections: investigation of the latencies of muscle activities. Behav Brain Res 2010; 214:428-36. [PMID: 20600349 DOI: 10.1016/j.bbr.2010.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Revised: 06/02/2010] [Accepted: 06/13/2010] [Indexed: 11/26/2022]
Abstract
To reduce the complexity of muscular control, a small number of muscular activations are combined to produce an infinity of movements. This concept of muscle synergies has been widely investigated, mainly by means of principal component analyses (PCA) in the case of unperturbed movements. However, reaching movements can be altered at any time if the target location is changed during their execution. In this case, PCA does not precisely measure the latencies of muscles activities. We develop here a simple method to investigate how a random target jump toward a single location induced motor corrections in the whole musculature by precisely determining the latencies of muscle activities during a complex pointing movement. Our main result demonstrated that both initiation times together as well as correction times together were strongly correlated for some pairs of muscles, independently of their occurrences during the motor sequence and independently of the location of the muscles at the anatomical level. This study thus provides a simple method to investigate the latencies of muscular activities and the way they are correlated between certain muscles to stress the muscular synergies involved in the movement. It also suggests that the CNS re-programs a new synergy after the target jumps in order to correct the on-going reaching movement. This latter corrective synergy involves the control of more muscles together compared to that used to initiate the movement. At the level of the Primary Motor Cortice (M1), muscles appear to be controlled as a coupled functional system, rather than individually and separately.
Collapse
Affiliation(s)
- Lilian Fautrelle
- Université de Bourgogne, Dijon, Campus Universitaire, UFR STAPS, BP 27877, F-21078 Dijon, France
| | | | | |
Collapse
|
13
|
Archambault PS, Caminiti R, Battaglia-Mayer A. Cortical mechanisms for online control of hand movement trajectory: the role of the posterior parietal cortex. ACTA ACUST UNITED AC 2009; 19:2848-64. [PMID: 19359349 DOI: 10.1093/cercor/bhp058] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The parietal mechanisms for the control of hand movement trajectory were studied by recording cell activity in area 5 of monkeys making direct reaches to visual targets and online corrections of movement trajectory, after change of target location in space. The activity of hand-related cells was fitted with a linear model including hand position, movement direction, and speed. The neural activity modulation mostly led, but also followed, hand movement. When a change of hand trajectory occurred, the pattern of activity associated with the movement to the first target evolved into that typical of the movement to the second one, thus following the corresponding variations of the hand kinematics. The visual signal concerning target location in space did not influence the firing activity associated with the direction of hand movement within the first 150 ms after target presentation. This might be the time necessary for the visuo-motor transformation underlying reaching. We conclude that online control of hand trajectory not only resides in the relationships between neural activity and kinematics, but, under specific circumstances, also on the coexistence of signals about ongoing and future hand movement direction.
Collapse
|
14
|
Ferraina S, Battaglia-Mayer A, Genovesio A, Archambault P, Caminiti R. Parietal encoding of action in depth. Neuropsychologia 2008; 47:1409-20. [PMID: 19154747 DOI: 10.1016/j.neuropsychologia.2008.12.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Accepted: 12/18/2008] [Indexed: 11/18/2022]
Abstract
The posterior parietal cortex is a crucial node in the process of coordinates transformation for the visual control of eye and hand movements. This conviction stems from both neurophysiological studies in the behaving monkey and from the analysis of the consequences of parietal lobe lesions in humans. Despite an extensive literature concerning varying aspects of the composition and control of eye and hand movements, there is little information about the physiological processes responsible for encoding target distance and hand movement in depth or about their control and impairment in parietal patients. This review is an attempt to provide a comprehensive picture from the fragmentary material existing on this issue in the literature. This should serve as a basis for discussion of what we consider to be a prototypical function of the dorsal visuomotor stream in the primate brain, that of encoding eye and hand movement in depth.
Collapse
Affiliation(s)
- Stefano Ferraina
- Department of Physiology and Pharmacology and CSFM, SAPIENZA, University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
15
|
Klier EM, Angelaki DE. Spatial updating and the maintenance of visual constancy. Neuroscience 2008; 156:801-18. [PMID: 18786618 DOI: 10.1016/j.neuroscience.2008.07.079] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Revised: 07/29/2008] [Accepted: 07/30/2008] [Indexed: 11/16/2022]
Abstract
Spatial updating is the means by which we keep track of the locations of objects in space even as we move. Four decades of research have shown that humans and non-human primates can take the amplitude and direction of intervening movements into account, including saccades (both head-fixed and head-free), pursuit, whole-body rotations and translations. At the neuronal level, spatial updating is thought to be maintained by receptive field locations that shift with changes in gaze, and evidence for such shifts has been shown in several cortical areas. These regions receive information about the intervening movement from several sources including motor efference copies when a voluntary movement is made and vestibular/somatosensory signals when the body is in motion. Many of these updating signals arise from brainstem regions that monitor our ongoing movements and subsequently transmit this information to the cortex via pathways that likely include the thalamus. Several issues of debate include (1) the relative contribution of extra-retinal sensory and efference copy signals to spatial updating, (2) the source of an updating signal for real life, three-dimensional motion that cannot arise from brain areas encoding only two-dimensional commands, and (3) the reference frames used by the brain to integrate updating signals from various sources. This review highlights the relevant spatial updating studies and provides a summary of the field today. We find that spatial constancy is maintained by a highly evolved neural mechanism that keeps track of our movements, transmits this information to relevant brain regions, and then uses this information to change the way in which single neurons respond. In this way, we are able to keep track of relevant objects in the outside world and interact with them in meaningful ways.
Collapse
Affiliation(s)
- E M Klier
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | |
Collapse
|
16
|
Battaglia-Mayer A, Archambault PS, Caminiti R. The cortical network for eye–hand coordination and its relevance to understanding motor disorders of parietal patients. Neuropsychologia 2006; 44:2607-20. [PMID: 16458334 DOI: 10.1016/j.neuropsychologia.2005.11.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Cortical neurons in both superior (SPL) and inferior (IPL) parietal lobules are modulated by a variety of signals concerning planning and execution of eye and hand movement. Thanks to these properties, parietal neurons are ideally suited for eye-hand coordination during reaching. In SPL, a fundamental feature of neurons is the invariance of their directional tuning properties across tasks that require different forms of spatial relationships between the eye and the hand. In such conditions, the orientation of the preferred directions (PDs) of individual SPL cells cluster within a limited sector of space, the global tuning field (GTF), to be regarded as an ideal frame to dynamically match eye and hand signals on the basis of the orientation of their PDs. At the population level, the mean vectors of the GTF cover the direction continuum in a uniform fashion. These neurons are part of a parietal network richly interconnected with the premotor and motor areas of the frontal lobe. Thus, the reaching disorders of patients with optic ataxia might be interpreted as a consequence of the breakdown of the combinatorial mechanisms of the GTF of parietal neurons, and of their interplay with premotor cortex. In IPL, the main feature of eye and/or hand related neurons is the uneven distribution of their PDs, that mostly point toward the contralateral space. This anisotropy of the representation of directional motor space might explain the movement disorders that characterize directional hypokinesia in neglect patients. In conclusion, the study of the dynamic properties of parietal neurons and of their relationships with the premotor cortex via cortico-cortical connections provides a basis for an interpretation of movement disorders of parietal patients from a neurophysiological perspective.
Collapse
Affiliation(s)
- Alexandra Battaglia-Mayer
- Dipartimento di Fisiologia umana e Farmacologia, Università degli Studi di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | |
Collapse
|
17
|
Sarlegna F, Blouin J, Bresciani JP, Bourdin C, Vercher JL, Gauthier GM. Target and hand position information in the online control of goal-directed arm movements. Exp Brain Res 2003; 151:524-35. [PMID: 12830346 DOI: 10.1007/s00221-003-1504-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2002] [Accepted: 04/11/2003] [Indexed: 11/28/2022]
Abstract
The present study compared the contribution of visual information of hand and target position to the online control of goal-directed arm movements. Their respective contributions were assessed by examining how human subjects reacted to a change of the position of either their seen hand or the visual target near the onset of the reaching movement. Subjects, seated head-fixed in a dark room, were instructed to look at and reach with a pointer towards visual targets located in the fronto-parallel plane at different distances to the right of the starting position. LEDs mounted on the tip of the pointer were used to provide true or erroneous visual feedback about hand position. In some trials, either the target or the pointer LED that signalled the actual hand position was shifted 4.5 cm to the left or to the right during the ocular saccade towards the target. Because of saccadic suppression, subjects did not perceive these displacements, which occurred near arm movement onset. The results showed that modifications of arm movement amplitude appeared, on average, 150 ms earlier and reached a greater extent (mean difference=2.7 cm) when there was a change of target position than when a change of the seen hand position occurred. These findings highlight the weight of target position information to the online control of arm movements. Visual information relative to hand position may be less contributive because proprioception also provides information about limb position.
Collapse
Affiliation(s)
- Fabrice Sarlegna
- UMR Mouvement & Perception, CNRS et Université de la Méditerranée, 163 Avenue de Luminy, 13288, Marseille Cedex 9, France
| | | | | | | | | | | |
Collapse
|
18
|
Neggers SF, Bekkering H. Ocular gaze is anchored to the target of an ongoing pointing movement. J Neurophysiol 2000; 83:639-51. [PMID: 10669480 DOI: 10.1152/jn.2000.83.2.639] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
It is well known that, typically, saccadic eye movements precede goal-directed hand movements to a visual target stimulus. Also pointing in general is more accurate when the pointing target is gazed at. In this study, it is hypothesized that saccades are not only preceding pointing but that gaze also is stabilized during pointing in humans. Subjects, whose eye and pointing movements were recorded, had to make a hand movement and a saccade to a first target. At arm movement peak velocity, when the eyes are usually already fixating the first target, a new target appeared, and subjects had to make a saccade toward it (dynamical trial type). In the statical trial type, a new target was offered when pointing was just completed. In a control experiment, a sequence of two saccades had to be made, with two different interstimulus intervals (ISI), comparable with the ISIs found in the first experiment for dynamic and static trial types. In a third experiment, ocular fixation position and pointing target were dissociated, subjects pointed at not fixated targets. The results showed that latencies of saccades toward the second target were on average 155 ms longer in the dynamic trial types, compared with the static trial types. Saccades evoked during pointing appeared to be delayed with approximately the remaining deceleration time of the pointing movement, resulting in "normal" residual saccadic reaction times (RTs), measured from pointing movement offset to saccade movement onset. In the control experiment, the latency of the second saccade was on average only 29 ms larger when the two targets appeared with a short ISI compared with trials with long ISIs. Therefore the saccadic refractory period cannot be responsible for the substantially bigger delays that were found in the first experiment. The observed saccadic delay during pointing is modulated by the distance between ocular fixation position and pointing target. The largest delays were found when the targets coincided, the smallest delays when they were dissociated. In sum, our results provide evidence for an active saccadic inhibition process, presumably to keep steady ocular fixation at a pointing target and its surroundings. Possible neurophysiological substrates that might underlie the reported phenomena are discussed.
Collapse
Affiliation(s)
- S F Neggers
- Max-Planck-Institute for Psychological Research, Department of Cognition and Action, 80802 Munich, Germany
| | | |
Collapse
|
19
|
Gauthier GM, Vercher JL, Blouin J. Egocentric visual target position and velocity coding: role of ocular muscle proprioception. Ann Biomed Eng 1995; 23:423-35. [PMID: 7486349 DOI: 10.1007/bf02584442] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Limited knowledge is available regarding the processes by which the brain codes the velocity of visual targets with respect to the observer. Two models have been previously proposed to describe the visual target localization mechanism. Both assume that the necessary information is derived from the coding of the position of the eye in the orbit, either through a copy of the muscular activation (out flow model) or through eye muscle proprioception (in flow model). Eye velocity coding might be derived from velocity sensitive ocular muscle proprioceptors or from position coding signals through differentiation. We used techniques based on manual pointing and manual tracking of visual target, combined with passive deviation of one covered eye, to demonstrate that ocular muscle proprioception is involved in (i) eye-in-head position coding, hence in target localization function; (ii) long-term maintenance of ocular alignment (phoria); and (iii) sensing of visual target velocity with respect to the head. These observations support other data now available, describing the processes by which the brain codes position and velocity of visual targets. Such findings might interest engineers in the field of robotics who are facing the problem of providing robots with the ability to sense object position and velocity in order to create an internal model of their working environment.
Collapse
Affiliation(s)
- G M Gauthier
- Laboratoire de Contrôles Sensorimoteurs, Université de Provence, Marseille, France
| | | | | |
Collapse
|
20
|
Blouin J, Gauthier GM, Vercher JL. Internal representation of gaze direction with and without retinal inputs in man. Neurosci Lett 1995; 183:187-9. [PMID: 7739790 DOI: 10.1016/0304-3940(94)11147-b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The contribution of retinal and extraretinal signals to the coding of eye position in the head was studied in human subjects (Ss). Horizontal saccades were produced in darkness. For some trials, before returning gaze direction to the starting position, a visual signal briefly stimulated the foveal retina. Results showed that this retinal input helped Ss to perceive gaze orientation more accurately after the saccade suggesting that the internal representation of eye position was improved when both extraretinal and retinal signals were available.
Collapse
Affiliation(s)
- J Blouin
- Laboratoire de Contrôles Sensorimoteurs, CNRS Université de Provence, Marseille, France
| | | | | |
Collapse
|