1
|
Sauerzopf L, Panduro CGC, Luft AR, Kühnis B, Gavagnin E, Unger T, Awai CE, Schönhammer JG, Degenfellner J, Spiess MR. Evaluating inter- and intra-rater reliability in assessing upper limb compensatory movements post-stroke: creating a ground truth through video analysis? J Neuroeng Rehabil 2024; 21:217. [PMID: 39702329 DOI: 10.1186/s12984-024-01506-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/12/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Compensatory movements frequently emerge in the process of motor recovery after a stroke. Given their potential for unfavorable long-term effects, it is crucial to assess and document compensatory movements throughout rehabilitation. However, clinically applicable assessment tools are currently limited. Deep learning methods have shown promising potential for assessing movement quality and addressing this gap. A crucial prerequisite for developing an accurate measurement tool is ensuring reliability in assessing compensatory movements, which is essential for establishing a valid ground truth. OBJECTIVE The study aimed to assess inter- and intra-rater reliability of occupational and physical therapists' visual assessment of compensatory movements based on video analysis. METHODS Experienced therapists evaluated video-recorded performances of a standardized drinking task through an online labeling system. The standardized drinking task was performed by seven individuals with mild to moderate upper limb motor impairments after a stroke. The therapists rated compensatory movements in predetermined body segments and movement phases using a slider with a continuous scale ranging from 0 (no compensation) to 100 (maximum compensation). The collected data were analyzed using a generalized-linear mixed effects model with zero-inflated beta regression to estimate variance components. Intraclass correlation coefficients (ICC) were calculated to assess inter- and intra-rater reliability. RESULTS Twenty-two therapists participated in this study. Inter-rater reliability was good for the phases of reaching, drinking, and returning (ICC ≥ .0.75), and moderate for both phases of transporting. Intra-rater reliability was excellent for the drinking phase (ICC > 0.9) and moderate to good for the phases of reaching, transporting, and returning of our cohort. ICCs for smoothness and interjoint coordination were poor for both inter- and intra-rater reliability. The data analysis unveiled a wide range of credible intervals for the ICCs across all domains examined in this study. CONCLUSIONS While this study shows promising inter- and intra-rater reliability for the drinking phases within our sample, the wide credible intervals raise the possibility that these results may have occurred by chance. Consequently, we cannot recommend the establishment of a ground truth for the automatic assessment of compensatory movements during a drinking task based on therapists' ratings alone.
Collapse
Affiliation(s)
- Lena Sauerzopf
- Institute of Occupational Therapy, ZHAW School of Health Sciences, Winterthur, Switzerland.
- Faculty of Medicine, University of Zurich, Zurich, Switzerland.
| | | | - Andreas R Luft
- Neuroscience of Motivation and Cognition in Rehabilitation (NeuroCoRe) Lab University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Kühnis
- Institute of Business Information Technology, ZHAW School of Management and Law, Winterthur, Switzerland
| | - Elena Gavagnin
- Institute of Business Information Technology, ZHAW School of Management and Law, Winterthur, Switzerland
- Centre for Artificial Intelligence, ZHAW School of Engineering, Winterthur, Switzerland
| | - Tim Unger
- Data Analytics and Rehabilitation Technology (DART) Lab, Lake Lucerne Institute, Vitznau, Switzerland
- Rehabilitation Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| | - Christopher Easthope Awai
- Data Analytics and Rehabilitation Technology (DART) Lab, Lake Lucerne Institute, Vitznau, Switzerland
| | - Josef G Schönhammer
- Neuroscience of Motivation and Cognition in Rehabilitation (NeuroCoRe) Lab University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Jürgen Degenfellner
- Institute of Physiotherapy, ZHAW School of Health Sciences, Winterthur, Switzerland
| | - Martina R Spiess
- Institute of Occupational Therapy, ZHAW School of Health Sciences, Winterthur, Switzerland
| |
Collapse
|
2
|
Kanade-Mehta P, Bengtson M, Stoeckmann T, McGuire J, Ghez C, Scheidt RA. Spatial mapping of posture-dependent resistance to passive displacement of the hypertonic arm post-stroke. J Neuroeng Rehabil 2023; 20:163. [PMID: 38041164 PMCID: PMC10693118 DOI: 10.1186/s12984-023-01285-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/18/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Muscles in the post-stroke arm commonly demonstrate abnormal reflexes that result in increased position- and velocity-dependent resistance to movement. We sought to develop a reliable way to quantify mechanical consequences of abnormal neuromuscular mechanisms throughout the reachable workspace in the hemiparetic arm post-stroke. METHODS Survivors of hemiparetic stroke (HS) and neurologically intact (NI) control subjects were instructed to relax as a robotic device repositioned the hand of their hemiparetic arm between several testing locations that sampled the arm's passive range of motion. During transitions, the robot induced motions at either the shoulder or elbow joint at three speeds: very slow (6°/s), medium (30°/s), and fast (90°/s). The robot held the hand at the testing location for at least 20 s after each transition. We recorded and analyzed hand force and electromyographic activations from selected muscles spanning the shoulder and elbow joints during and after transitions. RESULTS Hand forces and electromyographic activations were invariantly small at all speeds and all sample times in NI control subjects but varied systematically by transport speed during and shortly after movement in the HS subjects. Velocity-dependent resistance to stretch diminished within 2 s after movement ceased in the hemiparetic arms. Hand forces and EMGs changed very little from 2 s after the movement ended onward, exhibiting dependence on limb posture but no systematic dependence on movement speed or direction. Although each HS subject displayed a unique field of hand forces and EMG responses across the workspace after movement ceased, the magnitude of steady-state hand forces was generally greater near the outer boundaries of the workspace than in the center of the workspace for the HS group but not the NI group. CONCLUSIONS In the HS group, electromyographic activations exhibited abnormalities consistent with stroke-related decreases in the stretch reflex thresholds. These observations were consistent across repeated testing days. We expect that the approach described here will enable future studies to elucidate stroke's impact on the interaction between the neural mechanisms mediating control of upper extremity posture and movement during goal-directed actions such as reaching and pointing with the arm and hand.
Collapse
Affiliation(s)
- Priyanka Kanade-Mehta
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Engineering Hall, Rm 342, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Maria Bengtson
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Engineering Hall, Rm 342, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Tina Stoeckmann
- Department of Physical Therapy, Marquette University, Milwaukee, USA
| | - John McGuire
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, USA
| | - Claude Ghez
- Department of Neuroscience, Neurology, and Physiology, Columbia University Medical Center, New York, USA
| | - Robert A Scheidt
- Joint Department of Biomedical Engineering, Marquette University and the Medical College of Wisconsin, Engineering Hall, Rm 342, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA.
| |
Collapse
|
3
|
Dounskaia N. The Strategy of Human Movement Control and Teaching Motor Skills in Norm and Pathology. J Mot Behav 2023; 56:103-107. [PMID: 37394418 DOI: 10.1080/00222895.2023.2229769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
The strategy used by the brain to organize human goal-directed movements is still debated. Here, I argue that without the knowledge of this strategy, teaching movement skills required in complex sports activities and for rehabilitation of motor disorders remains an art and can often result in inefficient techniques and misleading instructions. However, the leading joint hypothesis offers a solution to this problem. It suggests that the control strategy consists in rotation of a single ('leading') joint actively and using the biomechanical effect produced by the leading joint as the primary contributor to motion of the other ('trailing') joints. This "trailing joint control pattern" was found in a large variety of movement types. This pattern is simple even for seemingly complex movements, it can be easily verbalized, and it requires focusing attention during learning only on one or two movement elements at a time. The use of the trailing joint control strategy therefore allows development of better targeted techniques of motor learning and rehabilitation.
Collapse
Affiliation(s)
- Natalia Dounskaia
- School of Nutrition and Health Promotion, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
4
|
Sethi A, Acharya A, Raj S, Dounskaia N. Control of paretic and non-paretic upper extremity during bimanual reaching after stroke. J Mot Behav 2023; 55:513-524. [PMID: 36966815 DOI: 10.1080/00222895.2023.2187751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/28/2023]
Abstract
Most actions of daily life engage the two upper extremities (UEs) in a highly coordinated manner. While it is recognized that bimanual movements are impaired post-stroke, understanding how the paretic and non-paretic UE contributes to this impairment is important for future interventions. We investigated kinetic and kinematics at the shoulder, elbow, and wrist joints in the paretic and non-paretic UE in 8 individuals with chronic stroke and non-dominant UE in 8 healthy controls during unimanual and bimanual tasks. Kinematic analysis revealed little effect of stroke. However, kinetic analysis revealed that during unimanual movements, joint control was impaired during unimanual and bimanual movements in both UEs, although to a lesser extent in the non-paretic than paretic UE. During bimanual movements, joint control did not change in the paretic UE, and it further deteriorated in the non-paretic UE compared with the unimanual movements. Our findings suggest that a single session of bimanual task performance does not improve joint control of the paretic UE and it impairs control of the non-paretic UE, making it more like that of the paretic UE.
Collapse
Affiliation(s)
- Amit Sethi
- Department of Occupational Therapy, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Sandesh Raj
- Department of Emergency Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Natalia Dounskaia
- Department of Kinesiology, Arizona State University, Phoenix, AZ, USA
| |
Collapse
|
5
|
Abstract
Spasticity is characterized by an enhanced size and reduced threshold for activation of stretch reflexes and is associated with "positive signs" such as clonus and spasms, as well as "negative features" such as paresis and a loss of automatic postural responses. Spasticity develops over time after a lesion and can be associated with reduced speed of movement, cocontraction, abnormal synergies, and pain. Spasticity is caused by a combination of damage to descending tracts, reductions in inhibitory activity within spinal cord circuits, and adaptive changes within motoneurons. Increased tone, hypertonia, can also be caused by changes in passive stiffness due to, for example, increase in connective tissue and reduction in muscle fascicle length. Understanding the cause of hypertonia is important for determining the management strategy as nonneural, passive causes of stiffness will be more amenable to physical rather than pharmacological interventions. The management of spasticity is determined by the views and goals of the patient, family, and carers, which should be integral to the multidisciplinary assessment. An assessment, and treatment, of trigger factors such as infection and skin breakdown should be made especially in people with a recent change in tone. The choice of management strategies for an individual will vary depending on the severity of spasticity, the distribution of spasticity (i.e., whether it affects multiple muscle groups or is more prominent in one or two groups), the type of lesion, and the potential for recovery. Management options include physical therapy, oral agents; focal therapies such as botulinum injections; and peripheral nerve blocks. Intrathecal baclofen can lead to a reduction in required oral antispasticity medications. When spasticity is severe intrathecal phenol may be an option. Surgical interventions, largely used in the pediatric population, include muscle transfers and lengthening and selective dorsal root rhizotomy.
Collapse
Affiliation(s)
- Jonathan Marsden
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, United Kingdom.
| | - Valerie Stevenson
- Department of Therapies and Rehabilitation, National Hospital for Neurology and Neurosurgery UCLH, London, United Kingdom
| | - Louise Jarrett
- Department of Neurology, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| |
Collapse
|
6
|
Frykberg GE, Grip H, Alt Murphy M. How many trials are needed in kinematic analysis of reach-to-grasp?-A study of the drinking task in persons with stroke and non-disabled controls. J Neuroeng Rehabil 2021; 18:101. [PMID: 34130716 PMCID: PMC8207615 DOI: 10.1186/s12984-021-00895-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022] Open
Abstract
Background Kinematic analysis of the 3D reach-to-grasp drinking task is recommended in stroke rehabilitation research. The number of trials required to reach performance stability, as an important aspect of reliability, has not been investigated for this task. Thus, the aims of this study were to determine the number of trials needed for the drinking task to reach within-session performance stability and to investigate trends in performance over a set of trials in non-disabled people and in a sample of individuals with chronic stroke. In addition, the between-sessions test–retest reliability in persons with stroke was established. Methods The drinking task was performed at least 10 times, following a standardized protocol, in 44 non-disabled and 8 post-stroke individuals. A marker-based motion capture system registered arm and trunk movements during 5 pre-defined phases of the drinking task. Intra class correlation statistics were used to determine the number of trials needed to reach performance stability as well as to establish test–retest reliability. Systematic within-session trends over multiple trials were analyzed with a paired t-test. Results For most of the kinematic variables 2 to 3 trials were needed to reach good performance stability in both investigated groups. More trials were needed for movement times in reaching and returning phase, movement smoothness, time to peak velocity and inter-joint-coordination. A small but significant trend of improvement in movement time over multiple trials was demonstrated in the non-disabled group, but not in the stroke group. A mean of 3 trials was sufficient to reach good to excellent test–retest reliability for most of the kinematic variables in the stroke sample. Conclusions This is the first study that determines the number of trials needed for good performance stability (non-disabled and stroke) and test–retest reliability (stroke) for temporal, endpoint and angular metrics of the drinking task. For most kinematic variables, 3–5 trials are sufficient to reach good reliability. This knowledge can be used to guide future kinematic studies.
Collapse
Affiliation(s)
- Gunilla Elmgren Frykberg
- Department of Neuroscience, Rehabilitation Medicine, Uppsala University, Box 256, 751 05, Uppsala, Sweden.
| | - Helena Grip
- Department of Radiation Sciences, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - Margit Alt Murphy
- Institute of Neuroscience and Physiology, Clinical Neuroscience, Rehabilitation Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
7
|
Gaveau J, Grospretre S, Berret B, Angelaki DE, Papaxanthis C. A cross-species neural integration of gravity for motor optimization. SCIENCE ADVANCES 2021; 7:7/15/eabf7800. [PMID: 33827823 PMCID: PMC8026131 DOI: 10.1126/sciadv.abf7800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/19/2021] [Indexed: 05/20/2023]
Abstract
Recent kinematic results, combined with model simulations, have provided support for the hypothesis that the human brain shapes motor patterns that use gravity effects to minimize muscle effort. Because many different muscular activation patterns can give rise to the same trajectory, here, we specifically investigate gravity-related movement properties by analyzing muscular activation patterns during single-degree-of-freedom arm movements in various directions. Using a well-known decomposition method of tonic and phasic electromyographic activities, we demonstrate that phasic electromyograms (EMGs) present systematic negative phases. This negativity reveals the optimal motor plan's neural signature, where the motor system harvests the mechanical effects of gravity to accelerate downward and decelerate upward movements, thereby saving muscle effort. We compare experimental findings in humans to monkeys, generalizing the Effort-optimization strategy across species.
Collapse
Affiliation(s)
- Jeremie Gaveau
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sidney Grospretre
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
- EA4660-C3S Laboratory-Culture, Sport, Health and Society Univ. Bourgogne Franche-Comté, Besançon, France
| | - Bastien Berret
- CIAMS, Université Paris-Saclay, Orsay, France
- CIAMS, Université d'Orléans, Orléans, France
- Institut Universitaire de France (IUF) , Paris, France
| | | | - Charalambos Papaxanthis
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000 Dijon, France
| |
Collapse
|
8
|
Dounskaia N, Shimansky Y, Ganter BK, Vidt ME. A simple joint control pattern dominates performance of unconstrained arm movements of daily living tasks. PLoS One 2020; 15:e0235813. [PMID: 32658898 PMCID: PMC7357763 DOI: 10.1371/journal.pone.0235813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/23/2020] [Indexed: 11/21/2022] Open
Abstract
A trailing joint control pattern, during which a single joint is rotated actively and the mechanical effect of this motion is used to move the other joints, was previously observed during simplified, laboratory-based tasks. We examined whether this simple pattern also underlies control of complex, unconstrained arm movements of daily activities. Six tasks were analyzed. Using kinematic data, we estimated motion of 7 degrees of freedom (DOF) of the shoulder, elbow, and wrist, and the contribution of muscle and passive interaction and gravitational torques to net torque at each joint. Despite task variety, the hand was transported predominantly by shoulder and elbow flexion/extension, although shoulder external/internal rotation also contributed in some tasks. The other DOF were used to orient the hand in space. The trailing pattern represented by production of net torque by passive torques at the shoulder or elbow or both was observed during the biggest portion of each movement. Net torque generation by muscle torque at both joints simultaneously was mainly limited to movement initiation toward the targets and movement termination when returning to the initial position, and associated with needing to overcome gravity. The results support the interpretation of previous studies that prevalence of the trailing pattern is a feature of skillful, coordinated movements. The simplicity of the trailing pattern is promising for quantification of dyscoordination caused by motor disorders and formulation of straightforward instructions to facilitate rehabilitation and motor learning.
Collapse
Affiliation(s)
- Natalia Dounskaia
- Arizona State University, Kinesiology Program, Phoenix, AZ, United States of America
- * E-mail:
| | - Yury Shimansky
- Arizona State University, Kinesiology Program, Phoenix, AZ, United States of America
| | | | - Meghan E. Vidt
- Biomedical Engineering, Pennsylvania State University, University Park, PA, United States of America
- Penn State College of Medicine, Physical Medicine and Rehabilitation, Hershey, PA, United States of America
| |
Collapse
|