1
|
Boukadoum A, Tazerouti F. Digenea community structure of the Salema, Sarpa salpa (Linnaeus, 1758) (Teleostei, Sparidae), from the Central coast of Algeria. Helminthologia 2024; 61:59-75. [PMID: 38659470 PMCID: PMC11038246 DOI: 10.2478/helm-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/29/2024] [Indexed: 04/26/2024] Open
Abstract
The main goal of the current work was to describe and analyse the Digenean community structure in Sarpa salpa. A total of 114 specimens of S. salpa were collected from the Central Coast of Algeria at six localities. The fish were immediately transported to the laboratory to be examined for digeneans. From 107 of the 114 S. salpa examined, a total of 8,722 specimens of seven species belonging to three families were recovered. Among them, Robphildollfusium fractum and Mesometra orbicularis were the most prevalent and abundant species. Moreover, Lepocreadium album was found for the first time in S. salpa from the coast of Algeria, and Centroderma spinosissima and Wardula capitellata represent new parasites to the Algerian digenean fauna that infect teleost fish. The component community of these Digeneans is characterised by R. fractum as its dominant species representing 62% of the total number of collected Digeneans, as well by a Shannon diversity index (H') and Dominance Simpson index (D) of 1.03 and 2.23, respectively. According to Spearman's correlation test, Mesometra brachycoelia and W. capitellata were negatively correlated to the host biological factors. On the other hand, R. fractum showed a positive correlation between its mean abundance and the total length of the fish. With these findings, we provided the component structure of the Digenean fauna of S. salpa and highlighted their diversity, contributing to the biodiversity of the parasitic Platyhelminthes in Algeria.
Collapse
Affiliation(s)
- A. Boukadoum
- Université des Sciences et de la Technologie Houari Boumediene (U.S.T.H.B), Faculté des Sciences Biologiques, Département Écologie et Environnement, Laboratoire de Biodiversité et Environnement, Interactions - Génomes, BP 32, El Alia Bab Ezzouar, Alger, Algérie
| | - F. Tazerouti
- Université des Sciences et de la Technologie Houari Boumediene (U.S.T.H.B), Faculté des Sciences Biologiques, Département Écologie et Environnement, Laboratoire de Biodiversité et Environnement, Interactions - Génomes, BP 32, El Alia Bab Ezzouar, Alger, Algérie
| |
Collapse
|
2
|
Correia S, Fernández-Boo S, Magalhães L, de Montaudouin X, Daffe G, Poulin R, Vera M. Trematode genetic patterns at host individual and population scales provide insights about infection mechanisms. Parasitology 2023; 150:1207-1220. [PMID: 38084628 PMCID: PMC10941227 DOI: 10.1017/s0031182023000987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 01/10/2024]
Abstract
Multiple parasites can infect a single host, creating a dynamic environment where each parasite must compete over host resources. Such interactions can cause greater harm to the host than single infections and can also have negative consequences for the parasites themselves. In their first intermediate hosts, trematodes multiply asexually and can eventually reach up to 20% of the host's biomass. In most species, it is unclear whether this biomass results from a single infection or co-infection by 2 or more infective stages (miracidia), the latter being more likely a priori in areas where prevalence of infection is high. Using as model system the trematode Bucephalus minimus and its first intermediate host cockles, we examined the genetic diversity of the cytochrome c oxidase subunit I region in B. minimus from 3 distinct geographical areas and performed a phylogeographic study of B. minimus populations along the Northeast Atlantic coast. Within localities, the high genetic variability found across trematodes infecting different individual cockles, compared to the absence of variability within the same host, suggests that infections could be generally originating from a single miracidium. On a large spatial scale, we uncovered significant population structure of B. minimus, specifically between the north and south of Bay of Biscay. Although other explanations are possible, we suggest this pattern may be driven by the population structure of the final host.
Collapse
Affiliation(s)
- Simão Correia
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
- Aquatic and Animal Health Group, CIIMAR, University of Porto, 4450-208 Matosinhos, Portugal
- Department of Zoology, Genetics and Physical Anthropology, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain
- Department of Zoology, University of Otago, 9054 Dunedin, New Zealand
| | - Sergio Fernández-Boo
- Aquatic and Animal Health Group, CIIMAR, University of Porto, 4450-208 Matosinhos, Portugal
| | - Luísa Magalhães
- Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | | | - Guillemine Daffe
- Université de Bordeaux, CNRS, Observatoire Aquitain des Sciences de l'Univers, F-33615 Pessac, France
| | - Robert Poulin
- Department of Zoology, University of Otago, 9054 Dunedin, New Zealand
| | - Manuel Vera
- Department of Zoology, Genetics and Physical Anthropology, Campus Terra, University of Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
3
|
Richard A, Maire O, Daffe G, Magalhães L, de Montaudouin X. Himasthla spp. (Trematoda) In The Edible Cockle Cerastoderma edule: Review, Long-Term Monitoring And New Molecular Insights. Parasitology 2022; 149:1-52. [PMID: 35352675 PMCID: PMC10090617 DOI: 10.1017/s0031182022000373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/18/2022] [Accepted: 03/18/2022] [Indexed: 11/06/2022]
Abstract
Trematodes are the main macroparasites in coastal waters. The most abundant and widespread form of these parasites is metacercaria. Their impact on their host fitness is considered relatively low but metacercarial larvae of some species can have deleterious effects on individuals and/or populations. This review focused on the cockle Cerastoderma edule and four species of the genus Himasthla ; a common host–parasite system in marine coastal environments. Our aims were (1) to review literature concerning Himasthla continua , Himasthla elongata , Himasthla interrupta and Himasthla quissetensis in cockles; (2) to provide molecular signatures of these parasites and (3) to analyse infection patterns using a 20-year monthly database of cockle monitoring from Banc d'Arguin (France). Due to identification uncertainties, the analysis of the database was restricted to H. interrupta and H. quissetensis , and it was revealed that these parasites infect cockles of the same size range. The intensity of parasites increased with cockle size/age. During the colder months, the mean parasite intensity of a cockle cohort decreased, while infection occurred in the warmest season. No inter-specific competition between trematode parasites was detected. Furthermore, even if the intensity of H. interrupta or H. quissetensis infection fluctuated in different years, this did not modify the trematode community structure in the cockles. The intensity of infection of both species was also positively correlated with trematode species richness and metacercarial abundance. This study highlighted the possible detrimental role of Himasthla spp. in cockle population dynamics. It also revealed the risks of misidentification, which should be resolved by further molecular approaches.
Collapse
Affiliation(s)
- Anaïs Richard
- UMR 5805, EPOC UMR, OASU, Université de Bordeaux, F33120 Arcachon, France
| | - Olivier Maire
- UMR 5805, EPOC UMR, OASU, Université de Bordeaux, F33120 Arcachon, France
| | - Guillemine Daffe
- Université de Bordeaux, CNRS, Observatoire Aquitain des Sciences de l'Univers, UMS 2567 POREA, F-33615 Pessac, France
| | - Luísa Magalhães
- CESAM – Centre for Environmental and Marine Studies, Departamento de Biologia, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | |
Collapse
|
4
|
Correia S, Freitas R, de Montaudouin X, Magalhães L. Effect of light on the trematode Himasthla elongata: from cercarial behaviour to infection success. DISEASES OF AQUATIC ORGANISMS 2021; 146:23-28. [PMID: 34498607 DOI: 10.3354/dao03616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The cockle Cerastoderma edule, a socioeconomically important bivalve of the northeast Atlantic, is host to several trematodes, including Himasthla elongata. In the life cycle of this trematode, cercariae (free-living stages) emerge from the first intermediate host, a snail, to infect cockles as second intermediate hosts. During their lifespan (less than 2 d), cercariae must ensure successful host-to-host transmission via the surrounding water and therefore are exposed to and impacted by different environmental conditions, including abiotic factors. Given that the light:dark cycle is one of the major drivers of behaviour in aquatic habitats, we aimed to determine the influence of light on cercariae and host behaviour based on 3 hypotheses. First, by having a benthic second intermediate host, these cercariae will display a photonegative orientation; second, and conversely, host behaviour will not be influenced by light; and third, cercariae infection success will be light-dependent. Results showed that cercariae display a photopositive orientation (first hypothesis rejected), displaying movements towards light. Host activity (evaluated by oxygen consumption) was similar among conditions, i.e. dark vs. light (second hypothesis accepted), but hosts acquired more parasites when experimentally infected in the dark (third hypothesis accepted). This light-dependent infection of the host is explained by a change of cercarial behaviour when exposed to light, decreasing their infection success. This study highlights that trematode responses to external conditions may be linked to successful life cycle completion rather than being altered by the host habitat. Light influence on cercarial behaviour resulted in increased infection success that may affect trematode population dynamics and their distributional range.
Collapse
Affiliation(s)
- Simão Correia
- CESAM, Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | |
Collapse
|
5
|
Hill-Spanik KM, Sams C, Connors VA, Bricker T, de Buron I. Molecular data reshape our understanding of the life cycles of three digeneans (Monorchiidae and Gymnophallidae) infecting the bivalve, Donax variabilis: it's just a facultative host! ACTA ACUST UNITED AC 2021; 28:34. [PMID: 33835020 PMCID: PMC8034251 DOI: 10.1051/parasite/2021027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/11/2021] [Indexed: 11/15/2022]
Abstract
The coquina, Donax variabilis, is a known intermediate host of monorchiid and gymnophallid digeneans. Limited morphological criteria for the host and the digeneans' larval stages have caused confusion in records. Herein, identities of coquinas from the United States (US) Atlantic coast were verified molecularly. We demonstrate that the current GenBank sequences for D. variabilis are erroneous, with the US sequence referring to D. fossor. Two cercariae and three metacercariae previously described in the Gulf of Mexico and one new cercaria were identified morphologically and molecularly, with only metacercariae occurring in both hosts. On the Southeast Atlantic coast, D. variabilis' role is limited to being a facultative second intermediate host, and D. fossor, an older species, acts as both first and second intermediate hosts. Sequencing demonstrated 100% similarities between larval stages for each of the three digeneans. Sporocysts, single tail cercariae, and metacercariae in the incurrent siphon had sequences identical to those of monorchiid Lasiotocus trachinoti, for which we provide the complete life cycle. Adults are not known for the other two digeneans, and sequences from their larval stages were not identical to any in GenBank. Large sporocysts, cercariae (Cercaria choanura), and metacercariae in the coquinas' foot were identified as Lasiotocus choanura (Hopkins, 1958) n. comb. Small sporocysts, furcocercous cercariae, and metacercariae in the mantle were identified as gymnophallid Parvatrema cf. donacis. We clarify records wherein authors recognized the three digenean species but confused their life stages, and probably the hosts, as D. variabilis is sympatric with cryptic D. texasianus in the Gulf of Mexico.
Collapse
Affiliation(s)
- Kristina M Hill-Spanik
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| | - Claudia Sams
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| | - Vincent A Connors
- Department of Biology, Division of Natural Sciences, University of South Carolina Upstate, 1800 University Way, Spartanburg, 29303 SC, USA
| | - Tessa Bricker
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| | - Isaure de Buron
- Department of Biology, 205 Fort Johnson Road, College of Charleston, Charleston, 29412 SC, USA
| |
Collapse
|
6
|
Huntley JW, Scarponi D. Parasitism and host behavior in the context of a changing environment: The Holocene record of the commercially important bivalve Chamelea gallina, northern Italy. PLoS One 2021; 16:e0247790. [PMID: 33793588 PMCID: PMC8016236 DOI: 10.1371/journal.pone.0247790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/12/2021] [Indexed: 12/04/2022] Open
Abstract
Rapid warming and sea-level rise are predicted to be major driving forces in shaping coastal ecosystems and their services in the next century. Though forecasts of the multiple and complex effects of temperature and sea-level rise on ecological interactions suggest negative impacts on parasite diversity, the effect of long term climate change on parasite dynamics is complex and unresolved. Digenean trematodes are complex life cycle parasites that can induce characteristic traces on their bivalve hosts and hold potential to infer parasite host-dynamics through time and space. Previous work has demonstrated a consistent association between sea level rise and increasing prevalence of trematode traces, but a number of fundamental questions remain unanswered about this paleoecological proxy. Here we examine the relationships of host size, shape, and functional morphology with parasite prevalence and abundance, how parasites are distributed across hosts, and how all of these relationships vary through time, using the bivalve Chamelea gallina from a Holocene shallow marine succession in the Po coastal plain. Trematode prevalence increased and decreased in association with the transition from a wave-influenced estuarine system to a wave-dominated deltaic setting. Prevalence and abundance of trematode pits are associated with large host body size, reflecting ontogenetic accumulation of parasites, but temporal trends in median host size do not explain prevalence trends. Ongoing work will test the roles of temperature, salinity, and nutrient availability on trematode parasitism. Parasitized bivalves in one sample were shallower burrowers than their non-parasitized counterparts, suggesting that hosts of trematodes can be more susceptible to their predators, though the effect is ephemeral. Like in living parasite-host systems, trematode-induced malformations are strongly aggregated among hosts, wherein most host individuals harbor very few parasites while a few hosts have many. We interpret trace aggregation to support the assumption that traces are a reliable proxy for trematode parasitism in the fossil record.
Collapse
Affiliation(s)
- John Warren Huntley
- Department of Geological Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Daniele Scarponi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, University of Bologna, Bologna, Italy
| |
Collapse
|
7
|
Giari L, Ruehle B, Fano EA, Castaldelli G, Poulin R. Temporal dynamics of species associations in the parasite community of European eels, Anguilla anguilla, from a coastal lagoon. Int J Parasitol Parasites Wildl 2020; 12:67-75. [PMID: 32435583 PMCID: PMC7229350 DOI: 10.1016/j.ijppaw.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 11/28/2022]
Abstract
The resilience of biological communities is of central importance in ecology, but is difficult to investigate in nature. Parasite communities in individual hosts provide good model systems, as they allow a level of replication usually not possible with free-living communities. Here, using temporal data (2005-2017) on the communities of endohelminth parasites in European eels, Anguilla anguilla, from brackish-water lagoons in Italy, we test the resilience of interspecific associations to changes in the abundance of some parasite species and the disappearance of others. While most parasite species displayed changes in abundance over time, three trematodes that were present in the early years, two of which at high abundance, completely disappeared from the parasite community by the end of the study period. Possibly other host species required for the completion of their life cycles have declined in abundance, perhaps due to environmental changes. However, despite these marked changes to the overall community, pairwise correlations in abundance among the three most common parasite species (all trematodes) were stable over time and remained mostly unaffected by what happened to other species. We explore possible reasons for these resilient species associations within a temporally unstable parasite community inhabiting a mostly stable host population.
Collapse
Affiliation(s)
- Luisa Giari
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - Brandon Ruehle
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
| | - Elisa Anna Fano
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - Giuseppe Castaldelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Borsari St. 46, 44121 Ferrara, Italy
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, New Zealand
| |
Collapse
|
8
|
Monorchis parvus and Gymnophallus choledochus: two trematode species infecting cockles as first and second intermediate host. Parasitology 2020; 147:643-658. [PMID: 32127062 DOI: 10.1017/s0031182020000402] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The most deleterious stage of a trematode life cycle occurs in the first intermediate host where the parasite penetrates as a miracidium and asexually multiplicates in sporocysts or rediae. When infection advances, other organs can be occupied with severe effects on host individual health and population dynamics. Existing studies focused on these host/parasite systems are still scarce due to the usual low prevalence in ecosystems. Using cockles (Cerastoderma spp.) and two trematode species (Monorchis parvus and Gymnophallus choledochus) infecting these bivalves as first and second intermediate host, the present work aimed to (1) summarize the most relevant literature and (2) provide new information regarding this host/parasite system, taking advantage of a 21-year monthly database from Banc d'Arguin (France). This long-term monitoring showed that different trematode species display varying host size range preference (6-38 and 31-36 mm for M. parvus and G. choledochus, respectively). The occurrence of coinfection was lower than expected, raising some questions related to parasite interspecific competition. This review improved our understanding of the processes shaping the prevalence and distribution of parasitism. This study highlighted that beyond constant trematode assemblage monitoring, there is a need to identify the main predictors of rediae/sporocysts infection, such as the definitive host dynamics and miracidium infection processes, for future better management of host severe disease and mortality episodes.
Collapse
|
9
|
Metazoan parasite infracommunities of the dusky flounder (Syacium papillosum) as bioindicators of environmental conditions in the continental shelf of the Yucatan Peninsula, Mexico. Parasit Vectors 2019; 12:277. [PMID: 31151478 PMCID: PMC6545031 DOI: 10.1186/s13071-019-3524-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/20/2019] [Indexed: 02/03/2023] Open
Abstract
Background We assessed metrics of the metazoan parasite infracommunities of the dusky flounder (Syacium papillosum) as indicators of aquatic environmental health of the Yucatan Shelf (YS) prior to oil extraction. We sampled the dusky flounder and its parasites along the YS, mostly during the 2015 north wind season (November–April). Our aims were: (i) to determine whether the parasite infracommunity metrics of S. papillosum exhibit significant differences among YS subregions; (ii) to determine whether the probability of the occurrence of its parasite species and individuals were affected by environmental variables, nutrients, heavy metals and hydrocarbons at the seascape level; and (iii) to determine whether there were statistical differences between the parasite infracommunity metrics of S. papillosum from YS and those of Syacium gunteri from the Campeche Sound. Multivariate statistical analyses and generalised additive models (GAMs) were used to examine the potential statistical associations between the contaminants, environmental variables and parasite community metrics, and the maximum entropy algorithm (MaxEnt) was used to characterise the habitat’s suitability for the parasite’s probability of occurrence. Results We recovered 48 metazoan parasite species from 127 S. papillosum, with larval cestodes and digeneans being the most numerically-dominant. Multivariate analyses showed significant differences in parasite infracommunity metrics among Western YS, Mid YS and Caribbean subregions, with the latter being the richest in species but not in individuals. The GAM and MaxEnt results indicated a negative effect of top predators (e.g. sharks and rays) removal on parasite metrics. The parasite infracommunities of S. papillosum were twice as rich in the number of species and individuals as those reported for S. gunteri from the Campeche Sound. Conclusions The significant differences among subregions in parasite metrics were apparently due to the interruption of the Yucatan current during the north wind season. The fishing of top predators in combination with an influx of nutrients and hydrocarbons in low concentrations coincides with an increase in larval cestodes and digeneans in S. papillosum. The dusky flounder inhabits a region (YS) with a larger number of metazoan parasite species compared with those available for S. gunteri in the Campeche Sound, suggesting better environmental conditions for transmission in the YS. Electronic supplementary material The online version of this article (10.1186/s13071-019-3524-6) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Antar R, Gargouri L. The Diversity of Teleost Fish Trematodes in the Bay of Bizerte, Tunisia (Western Mediterranean). Helminthologia 2018; 55:146-156. [PMID: 31662641 PMCID: PMC6799550 DOI: 10.2478/helm-2018-0004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 01/16/2018] [Indexed: 11/20/2022] Open
Abstract
A total of 39 digeneans species allocated to 28 genera in 12 families were recovered from 534 fishes belonging to 14 species in three families (Carangidae, Mullidae and Sparidae) collected in the Bay of Bizerte off the coast of Tunisia. We provide a host-parasite list of records from this locality, including 63 host-parasite combinations. The Opecoelidae Ozaki, 1925 is the most diverse group with 12 species. The species richness of individual digenean genera in the Bay of Bizerte ranges from 1 - 6 species. The mean number of 2.58 species per host indicates a relatively high digenean diversity in the Bay of Bizerte, which is related to its geographical location, its connection with the neighbouring Bizerte Lagoon and the nature of the bottoms of the littoral marine areas off the northern Tunisian coasts. This diversity is significantly higher than that reported off the southern coast of Tunisia and distinctly lower than that observed for teleost hosts in the Scandola Nature Reserve off Corsica. Generally, the levels of infection in teleosts fishes from the Bay of Bizerte are lower than those from the other two localities.
Collapse
Affiliation(s)
- R. Antar
- Unité de Recherche: Bio-Ecologie Animale et Systématique Evolutive, Faculté des Sciences, Université Tunis El Manar, 2092Tunis, Tunisie
| | - L. Gargouri
- Unité de Recherche: Bio-Ecologie Animale et Systématique Evolutive, Faculté des Sciences, Université Tunis El Manar, 2092Tunis, Tunisie
| |
Collapse
|
11
|
The taxonomic and phylogenetic status of digeneans from the genus Timoniella (Digenea: Cryptogonimidae) in the Black and Baltic seas. J Helminthol 2017; 92:596-603. [PMID: 28974278 DOI: 10.1017/s0022149x1700075x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Timoniella spp. are cryptogonimid flukes (Digenea: Cryptogonimidae) that parasitize the guts of fish in brackish waters. Timoniella imbutiforme, a species from the Mediterranean Sea, is recorded in the Black Sea, while T. balthica has been described from the Baltic Sea. In this paper, we clarify the taxonomic status of Timoniella populations in the Baltic and Black seas. Adults and metacercariae of Timoniella spp. were sampled from localities in the Mediterranean Sea (France), Black Sea (Ukraine) and Baltic Sea (Germany) and subjected to molecular and morphological analysis, including Bayesian phylogenetic reconstruction based on concatenated sequences of ITS1-ITS2-28S. This allowed us to construct a new key to species of the genus Timoniella. Our results suggest that T. balthica forms part of the Boreal-Atlantic relict fauna of the Black Sea and should now be considered a junior synonym of T. imbutiforme.
Collapse
|
12
|
Surges in trematode prevalence linked to centennial-scale flooding events in the Adriatic. Sci Rep 2017; 7:5732. [PMID: 28720866 PMCID: PMC5516012 DOI: 10.1038/s41598-017-05979-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/31/2017] [Indexed: 11/30/2022] Open
Abstract
The forecasts of increasing global temperature and sea level rise have led to concern about the response of parasites to anthropogenic climate change. Whereas ecological studies of parasite response to environmental shifts are necessarily limited to short time scales, the fossil record can potentially provide a quantitative archive of long-term ecological responses to past climate transitions. Here, we document multi-centennial scale changes in prevalence of trematodes infesting the bivalve host Abra segmentum through multiple sea-level fluctuations preserved in brackish Holocene deposits of the Po Plain, Italy. Prevalence values were significantly elevated (p < 0.01) in samples associated with flooding surfaces, yet the temporal trends of parasite prevalence and host shell length, cannot be explained by Waltherian facies change, host availability, salinity, diversity, turnover, or community structure. The observed surges in parasite prevalence during past flooding events indicate that the ongoing global warming and sea-level rise will lead to significant intensification of trematode parasitism, suppressed fecundity of common benthic organisms, and negative impacts on marine ecosystems, ecosystem services, and, eventually, to human well-being.
Collapse
|
13
|
Huston DC, Cutmore SC, Cribb TH. The life-cycle of Gorgocephalus yaaji Bray & Cribb, 2005 (Digenea: Gorgocephalidae) with a review of the first intermediate hosts for the superfamily Lepocreadioidea Odhner, 1905. Syst Parasitol 2016; 93:653-65. [DOI: 10.1007/s11230-016-9655-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/19/2016] [Indexed: 11/28/2022]
|
14
|
Morphology and molecular analysis of life-cycle stages of Proctoeces maculatus (Looss, 1901) (Digenea: Fellodistomidae) in the Bizerte Lagoon, Tunisia. J Helminthol 2015; 90:726-736. [PMID: 26694018 DOI: 10.1017/s0022149x15001030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The life cycle of Proctoeces maculatus (Looss, 1901) (Digenea, Fellodistomidae) was studied in Bizerte Lagoon (Tunisia). Three sequential hosts appear to be involved: the Mediterranean mussel Mytilus galloprovincialis Lamarck, 1819 (Mytilidae) as the first intermediate host; the polychaete Sabella pavonina Savigny, 1822 (Sabellidae), as the second intermediate host; and fishes (Lithognathus mormyrus (Linnaeus, 1758) (Sparidae), Trachinotus ovatus (Linnaeus, 1758) (Carangidae) and Sparus aurata Linnaeus, 1758 (Sparidae) as the definitive hosts. It should be noted that S. pavonina was recorded as second intermediate host for P. maculatus for the first time. Molecular confirmation of the morphological identification of the life-cycle stages of this digenean was obtained using partial 28S rDNA sequences. Comparative sequences revealed that the sporocysts and the metacercariae are conspecific but they diverged by 0.3% from the adults. The present results raised the possibility of the existence of cryptic species within the different developmental stages. However, all the present isolates differed from material from Archosargus probatocephalus in the Gulf of Mexico identified as P. maculatus.
Collapse
|
15
|
Trematode maturation patterns in a migratory snail host: What happens during upshore residency in a Mediterranean lagoon? Parasitol Res 2015; 115:575-85. [PMID: 26446090 DOI: 10.1007/s00436-015-4774-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/01/2015] [Indexed: 11/27/2022]
Abstract
Maturation of trematode larval stages is expected to be temporally and spatially adapted to maximise the encounter with the adequate downstream host, i.e. the host, which will be infected by this parasite stage. Since studies on intramolluscan parasite maturation are scarce but important in the context of parasite transmission, the larval development inside sporocysts was monitored during upshore residency of the snail host Gibbula adansonii (Trochidae), i.e., from March to May (2011 and 2013), when these snails temporarily reside in the intertidal habitat of a Western Mediterranean lagoon (40° 37' 35″ N, 0° 44' 31″ E, Spain). Data on the relative quantity of different maturation stages of Cainocreadium labracis and Macvicaria obovata (Opecoelidae) parasitising the G. adansonii as well as on snail and sporocyst size were explored using linear models and linear mixed models. The effect of the trematodes on snail growth was shown to be species-specific, with snail and sporocyst size acting as proxies of the reproductive capacity of M. obovata but not that of C. labracis. The number of cercarial embryos and germinal balls did not show monthly variation in either parasite species, but a higher number of mature stages and the highest maturity index was found in April. Hence, during the snail's limited spawning-related presence in the upshore waters of the lagoon, continuous production and output of infectious cercariae was observed, which indicates a link between larval maturation and snail migration. The synchronization of snails, mature parasite transmission stages and downstream hosts in time and space guarantees a successful completion of the life cycle.
Collapse
|
16
|
Kudlai O, Cutmore SC, Cribb TH. Morphological and molecular data for three species of the Microphallidae (Trematoda: Digenea) in Australia, including the first descriptions of the cercariae of Maritrema brevisacciferum Shimazu et Pearson, 1991 and Microphallus minutus Johnston, 1948. Folia Parasitol (Praha) 2015; 62. [DOI: 10.14411/fp.2015.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/09/2015] [Indexed: 11/19/2022]
|
17
|
Review: Bucephalus minimus, a deleterious trematode parasite of cockles Cerastoderma spp. Parasitol Res 2015; 114:1263-78. [DOI: 10.1007/s00436-015-4374-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 02/04/2015] [Indexed: 10/24/2022]
|
18
|
Barnett LJ, Miller TL, Cribb TH. A review of the currently recognised opecoelid cercariae, including the identification and emergence ecology of Cercaria capricornia XII (Digenea: Opecoelidae) from Nassarius olivaceus (Gastropoda: Nassariidae) in Central Queensland, Australia. Parasitol Int 2014; 63:670-82. [PMID: 24786729 DOI: 10.1016/j.parint.2014.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 03/23/2014] [Accepted: 04/17/2014] [Indexed: 11/15/2022]
Affiliation(s)
- Leonie J Barnett
- Central Queensland University, Academic Learning Services Unit, Bruce Highway, North Rockhampton, Queensland 4702, Australia.
| | - Terrence L Miller
- School of Marine and Tropical Biology, James Cook University, Cairns, Queensland 4870, Australia.
| | - Thomas H Cribb
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| |
Collapse
|
19
|
Molecular evidence that the genus Cadenatella Dollfus, 1946 (Digenea: Plagiorchiida) belongs in the superfamily Haploporoidea Nicoll, 1914. Syst Parasitol 2014; 89:15-21. [DOI: 10.1007/s11230-014-9504-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/09/2014] [Indexed: 11/26/2022]
|
20
|
Sun D, Bray RA, Yong RQY, Cutmore SC, Cribb TH. Pseudobacciger cheneyae n. sp. (Digenea: Gymnophalloidea) from Weber's chromis (Chromis weberi Fowler & Bean) (Perciformes: Pomacentridae) at Lizard Island, Great Barrier Reef, Australia. Syst Parasitol 2014; 88:141-52. [PMID: 24832185 DOI: 10.1007/s11230-014-9494-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/16/2014] [Indexed: 11/28/2022]
Abstract
A new species of digenean, Pseudobacciger cheneyae n. sp., is described from the intestines of Weber's chromis (Chromis weberi Fowler & Bean) from off Lizard Island, Great Barrier Reef, Australia. This species differs from the three described species of Pseudobacciger Nahhas & Cable, 1964 [P. cablei Madhavi, 1975, P. harengulae Yamaguti, 1938 and P. manteri Nahhas & Cable, 1964] in combinations of the size of the suckers and the length of the caeca. The host of the present species is a perciform (Family Pomacentridae) which contrasts with previous records of the genus which are almost exclusively from clupeiform fishes. The genus Pseudobacciger is presently recognised within the family Faustulidae (Poche, 1926) but phylogenetic analyses of 28S and ITS2 rDNA show that the new species bears no relationship to species of four other faustulid genera (Antorchis Linton, 1911, Bacciger Nicoll, 1924, Paradiscogaster Yamaguti, 1934 and Trigonocryptus Martin, 1958) but that instead it is nested within the Gymnophalloidea (Odhner, 1905) as sister to the Tandanicolidae (Johnston, 1927). This result suggests that the Faustulidae is polyphyletic.
Collapse
Affiliation(s)
- Derek Sun
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia,
| | | | | | | | | |
Collapse
|
21
|
Born-Torrijos A, Holzer AS, Raga JA, Kostadinova A. Same host, same lagoon, different transmission pathways: effects of exogenous factors on larval emergence in two marine digenean parasites. Parasitol Res 2013; 113:545-54. [DOI: 10.1007/s00436-013-3686-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
|
22
|
Helminth parasites of fish and shellfish from the Santa Gilla Lagoon in southern Sardinia, Italy. J Helminthol 2013; 88:489-98. [PMID: 23790066 DOI: 10.1017/s0022149x13000461] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An extensive survey of helminth parasites in fish and shellfish species from Santa Gilla, a brackish water lagoon in southern Sardinia (western Mediterranean), resulted in the identification of 69 helminth parasite taxa and/or species from 13 fish species (n= 515) and seven bivalve species (n= 2322) examined between September 2001 and July 2011. The list summarizes information on the helminth parasites harboured by fish and molluscs contained in the available literature. Digenea species (37), both adults and larvae, dominated the parasite fauna, whereas Cestoda were the least represented class (three species). Monogenea, Nematoda and Acanthocephala were present with 17, 6 and 6 species, respectively, which were mainly adults. The most widespread parasite species was the generalist Contracaecum rudolphii A (Nematoda). Other species, such as the Haploporidae and Ascocotyle (Phagicola) spp. 1 and 2 (Digenea), showed a high family specificity in Mugilidae. Importantly, the study recorded the occurrence of potential zoonotic agents, such as Heterophyes heterophyes, Ascocotyle (Phagicola) spp. and C. rudolphii A, the latter two reaching the highest indices of infection in the highly marketed fish grey mullet and sea bass, respectively. The highest parasite richness was detected in Dicentrarchus labrax, which harboured 17 helminth species, whereas the lowest value was observed in Atherina boyeri, infected by only three species. The list includes the first geographical record in Italian coastal waters of Robinia aurata and Stictodora sawakinensis, and 30 reports of new host-parasite complexes, including the larval stages of Ascocotyle (Ascocotyle) sp. and Southwellina hispida in D. labrax.
Collapse
|
23
|
Born-Torrijos A, Kostadinova A, Raga JA, Holzer AS. Molecular and morphological identification of larval opecoelids (Digenea: Opecoelidae) parasitising prosobranch snails in a Western Mediterranean lagoon. Parasitol Int 2012; 61:450-60. [PMID: 22446012 DOI: 10.1016/j.parint.2012.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 10/28/2022]
Abstract
In a study of the digeneans parasitising molluscs in the Els Alfacs lagoon (Ebro Delta, Western Mediterranean) we found heavy infections with sporocysts emitting two types of cotylocercous cercariae in the prosobranch trochid gastropod Gibbula adansonii and with metacercariae in the prosobranch nassariid gastropod Cyclope neritea. A comparative analysis using ITS ribosomal DNA sequences from these larval stages and published sequences of 17 larval and adult opecoelid stages allowed us to elucidate the life-cycle of Macvicaria obovata and to confirm the identification of Cainocreadium labracis based on cercarial morphology. We provide molecular evidence for the identification and the first detailed morphological descriptions of the intramolluscan larval stages of the two opecoelid species as well as partial 28S rDNA sequences to aid future studies on systematic relationships within the Opecoelidae.
Collapse
Affiliation(s)
- Ana Born-Torrijos
- Cavanilles Institute for Biodiversity and Evolutionary Biology, Science Park, University of Valencia, PO Box 22 085, 46071 Valencia, Spain.
| | | | | | | |
Collapse
|
24
|
Taxonomy, host specificity and dietary implications of Hurleytrematoides (Digenea: Monorchiidae) from chaetodontid fishes on the Great Barrier Reef. Parasitol Int 2011; 60:255-69. [DOI: 10.1016/j.parint.2011.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 03/04/2011] [Accepted: 03/27/2011] [Indexed: 11/20/2022]
|
25
|
Molecules and morphology reveal cryptic variation among digeneans infecting sympatric mullets in the Mediterranean. Parasitology 2009; 137:287-302. [DOI: 10.1017/s0031182009991375] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SUMMARYWe applied a combined molecular and morphological approach to resolve the taxonomic status of Saccocoelium spp. parasitizing sympatric mullets (Mugilidae) in the Mediterranean. Eight morphotypes of Saccocoelium were distinguished by means of multivariate statistical analyses: 2 of Saccocoelium obesum ex Liza spp.; 4 of S. tensum ex Liza spp.; and 2 (S. cephali and Saccocoelium sp.) ex Mugil cephalus. Sequences of the 28S and ITS2 rRNA gene regions were obtained for a total of 21 isolates of these morphotypes. Combining sequence data analysis with a detailed morphological and multivariate morphometric study of the specimens allowed the demonstration of cryptic diversity thus rejecting the hypothesis of a single species of Saccocoelium infecting sympatric mullets in the Mediterranean. Comparative sequence analysis revealed 4 unique genotypes, thus corroborating the distinct species status of Saccocoelium obesum, S. tensum and S. cephali and a new cryptic species ex Liza aurata and L. saliens recognized by its consistent morphological differentiation and genetic divergence. However, in spite of their sharp morphological difference the 2 morphotypes from M. cephalus showed no molecular differentiation and 4 morphotypes of S. tensum were genetically identical. This wide intraspecific morphological variation within S. tensum and S. cephali suggests that delimiting species of Saccocoelium using solely morphological criteria will be misleading.
Collapse
|