1
|
Laso-Jadart R, O'Malley M, Sykulski AM, Ambroise C, Madoui MA. Holistic view of the seascape dynamics and environment impact on macro-scale genetic connectivity of marine plankton populations. BMC Ecol Evol 2023; 23:46. [PMID: 37658324 PMCID: PMC10472650 DOI: 10.1186/s12862-023-02160-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Plankton seascape genomics studies have revealed different trends from large-scale weak differentiation to microscale structures. Previous studies have underlined the influence of the environment and seascape on species differentiation and adaptation. However, these studies have generally focused on a few single species, sparse molecular markers, or local scales. Here, we investigated the genomic differentiation of plankton at the macro-scale in a holistic approach using Tara Oceans metagenomic data together with a reference-free computational method. RESULTS We reconstructed the FST-based genomic differentiation of 113 marine planktonic taxa occurring in the North and South Atlantic Oceans, Southern Ocean, and Mediterranean Sea. These taxa belong to various taxonomic clades spanning Metazoa, Chromista, Chlorophyta, Bacteria, and viruses. Globally, population genetic connectivity was significantly higher within oceanic basins and lower in bacteria and unicellular eukaryotes than in zooplankton. Using mixed linear models, we tested six abiotic factors influencing connectivity, including Lagrangian travel time, as proxies of oceanic current effects. We found that oceanic currents were the main population genetic connectivity drivers, together with temperature and salinity. Finally, we classified the 113 taxa into parameter-driven groups and showed that plankton taxa belonging to the same taxonomic rank such as phylum, class or order presented genomic differentiation driven by different environmental factors. CONCLUSION Our results validate the isolation-by-current hypothesis for a non-negligible proportion of taxa and highlight the role of other physicochemical parameters in large-scale plankton genetic connectivity. The reference-free approach used in this study offers a new systematic framework to analyse the population genomics of non-model and undocumented marine organisms from a large-scale and holistic point of view.
Collapse
Affiliation(s)
- Romuald Laso-Jadart
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, Paris, France
| | - Michael O'Malley
- STOR-i Centre for Doctoral Training/Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | - Adam M Sykulski
- STOR-i Centre for Doctoral Training/Department of Mathematics and Statistics, Lancaster University, Lancaster, UK
| | | | - Mohammed-Amin Madoui
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara Oceans GO-SEE, 3 rue Michel-Ange, Paris, France.
- Service d'Etude des Prions et des Infections Atypiques (SEPIA), Institut François Jacob, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université Paris Saclay, Fontenay-Aux-Roses, France.
- Équipe Écologie Évolutive, UMR CNRS 6282 BioGéoSciences, Université de Bourgogne Franche-Comté, 21000, Dijon, France.
| |
Collapse
|
2
|
Lee PW, Hsiao SH, Chou C, Tseng LC, Hwang JS. Zooplankton Fluctuations in the Surface Waters of the Estuary of a Large Subtropical Urban River. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.598274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Danshuei River has a third largest catchment area and third longest in Taiwan. It flows through the capital, Taipei, and more than six million people live within its catchment area. Its estuary is characterized by a highly variable chemical and physical environment that is affected by the interaction of inland freshwater runoff with wastewater, and toward the coast is also influenced by the China Coastal Current and the Kuroshio Current. By collecting zooplankton bimonthly in 2014 from the surface layer (0–2 m depth) at five sites in the estuary, we were able to demonstrate that the composition of the zooplankton, and particularly its copepod fraction, varied significantly among sampling stations and months, thereby revealing seasonal succession. Fourteen higher taxa or other categories of zooplankter were identified, with the following being most common taxa: Decapoda, Copepoda (including Calanoida, Cyclopoida, and Harpacticoida), and “other larvae.” The Copepoda comprised 44 taxa (including eight only identified to genus) belonging to 3 orders, 17 families, and 29 genera, the five most abundant of which were Bestiolina n. sp. (undescribed), Corycaeus spp., Parvocalanus crassirostris, Acartia sp., and Paracalanus parvus. The highest and lowest copepod abundances were recorded in July (2557.88 inds. m–3) and January (1.3 inds. m–3), respectively. Observed changes in abundance of many kinds of copepod appeared to be significantly related to changes in physico-chemical parameters (e.g., salinity, temperature, pH, and dissolved oxygen concentration). Cluster analysis confirmed the existence of distinct copepod communities, each characterized by a preference for a different set of environmental conditions. Our comprehensive literature review of the copepod biodiversity of Taiwan’s major rivers for comparison with similar data compiled for other estuaries in the world, the first time such a review has been compiled, shows that 32 copepod taxa have been recorded from the brackish and freshwater parts of the Danshuei River. They represent 58.2% of the total number of brackish- and freshwater copepod species in Taiwan, and five of them have so far only been recorded in the Danshuei River: the calanoids Acartiella sinensis and Pseudodiaptomus forbesi, the cyclopoids Oithona fragilis and Oithona simplex, and the harpacticoid Tachidius (Tachidius) discipes.
Collapse
|
3
|
Madoui MA, Poulain J, Sugier K, Wessner M, Noel B, Berline L, Labadie K, Cornils A, Blanco-Bercial L, Stemmann L, Jamet JL, Wincker P. New insights into global biogeography, population structure and natural selection from the genome of the epipelagic copepodOithona. Mol Ecol 2017. [DOI: 10.1111/mec.14214] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Mohammed-Amin Madoui
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
- Centre National de la Recherche Scientifique; UMR 8030 Université d'Evry val d'Essonne; Evry France
- Université d'Evry Val D'Essonne; Evry France
| | - Julie Poulain
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
| | - Kevin Sugier
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
- Centre National de la Recherche Scientifique; UMR 8030 Université d'Evry val d'Essonne; Evry France
- Université d'Evry Val D'Essonne; Evry France
| | - Marc Wessner
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
| | - Benjamin Noel
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
| | - Leo Berline
- CNRS/INSU/IRD; Mediterranean Institute of Oceanography (MIO); Aix-Marseille Université; Marseille France
| | - Karine Labadie
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
| | - Astrid Cornils
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung; Polar Biological Oceanography; Bremerhaven Germany
| | | | - Lars Stemmann
- INSU-CNRS; Laboratoire D'Océanographie de Villefranche; UPMC Univ Paris 06; Sorbonne Universités; Villefranche-Sur-Mer France
| | - Jean-Louis Jamet
- Laboratoire PROTEE-EBMA E.A. 3819; Université de Toulon; La Garde Cedex France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA); Institut de Biologie François Jacob, Genoscope; Evry France
- Centre National de la Recherche Scientifique; UMR 8030 Université d'Evry val d'Essonne; Evry France
- Université d'Evry Val D'Essonne; Evry France
| |
Collapse
|
4
|
Ohtsuka S, Nishida S. Copepod Biodiversity in Japan: Recent Advances in Japanese Copepodology. SPECIES DIVERSITY OF ANIMALS IN JAPAN 2017. [DOI: 10.1007/978-4-431-56432-4_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
5
|
Cornils A, Wend-Heckmann B, Held C. Global phylogeography of Oithona similis s.l. (Crustacea, Copepoda, Oithonidae) - A cosmopolitan plankton species or a complex of cryptic lineages? Mol Phylogenet Evol 2016; 107:473-485. [PMID: 28007567 DOI: 10.1016/j.ympev.2016.12.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 11/19/2022]
Abstract
Traditionally, many small-sized copepod species are considered to be widespread, bipolar or cosmopolitan. However, these large-scale distribution patterns need to be re-examined in view of increasing evidence of cryptic and pseudo-cryptic speciation in pelagic copepods. Here, we present a phylogeographic study of Oithona similis s.l. populations from the Arctic Ocean, the Southern Ocean and its northern boundaries, the North Atlantic and the Mediterrranean Sea. O. similis s.l. is considered as one of the most abundant species in temperate to polar oceans and acts as an important link in the trophic network between the microbial loop and higher trophic levels such as fish larvae. Two gene fragments were analysed: the mitochondrial cytochrome oxidase c subunit I (COI), and the nuclear ribosomal 28 S genetic marker. Seven distinct, geographically delimitated, mitochondrial lineages could be identified, with divergences among the lineages ranging from 8 to 24%, thus representing most likely cryptic or pseudocryptic species within O. similis s.l. Four lineages were identified within or close to the borders of the Southern Ocean, one lineage in the Arctic Ocean and two lineages in the temperate Northern hemisphere. Surprisingly the Arctic lineage was more closely related to lineages from the Southern hemisphere than to the other lineages from the Northern hemisphere, suggesting that geographic proximity is a rather poor predictor of how closely related the clades are on a genetic level.
Collapse
Affiliation(s)
- Astrid Cornils
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | - Britta Wend-Heckmann
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Christoph Held
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| |
Collapse
|
6
|
Radhika R, Bijoy Nandan S, Harikrishnan M. Morphological and molecular identification of marine copepod Dioithona rigida Giesbrecht, 1896 (Crustacea:Cyclopoida) based on mitochondrial COI gene sequences, from Lakshadweep sea, India. Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:872-879. [PMID: 27549575 DOI: 10.1080/24701394.2016.1202941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Morphological identification of the marine cyclopoid copepod Dioithona rigida in combination with sequencing a 645 bp fragment of mitochondrial cytochrome oxidase c subunit I (mtCOI) gene, collected from offshore waters of Kavarathi Island, Lakshadweep Sea, is presented in this study. Kiefer in 1935 classified Dioithona as a separate genus from Oithona. The main distinguishing characters observed in the collected samples, such as the presence of well-developed P5 with 2 setae, 5 segmented urosome, 12 segmented antennule, compact dagger-like setae on the inner margin of proximal segment of exopod ramus in P1-P4 and engorged portion of P1-bearing a spine, confirmed their morphology to D. rigida. A comparison of setal formulae of the exopod and endopod of D. rigida with those recorded previously by various authors are also presented here. Maximum likelihood Tree analysis exhibited the clustering of D. rigida sequences into a single clade (accession numbers KP972540.1-KR528588.1), which in contrast was 37-42% divergent from other Oithona species. Further intra-specific divergence values of 0-2% also confirmed the genetic identity of D. rigida species. Paracyclopina nana was selected as an out group displayed a diverged array. The present results distinctly differentiated D. rigida from other Oithona species.
Collapse
Affiliation(s)
- R Radhika
- a Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences , Cochin University of Science and Technology , Cochin , Kerala , India
| | - S Bijoy Nandan
- a Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences , Cochin University of Science and Technology , Cochin , Kerala , India
| | - M Harikrishnan
- b School of Industrial Fisheries , Cochin University of Science and Technology , Cochin , Kerala , India
| |
Collapse
|
7
|
Trivedi S, Aloufi AA, Ansari AA, Ghosh SK. Role of DNA barcoding in marine biodiversity assessment and conservation: An update. Saudi J Biol Sci 2016; 23:161-71. [PMID: 26980996 PMCID: PMC4778524 DOI: 10.1016/j.sjbs.2015.01.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/09/2014] [Accepted: 01/05/2015] [Indexed: 12/18/2022] Open
Abstract
More than two third area of our planet is covered by oceans and assessment of marine biodiversity is a challenging task. With the increasing global population, there is a tendency to exploit marine resources for food, energy and other requirements. This puts pressure on the fragile marine environment and necessitates sustainable conservation efforts. Marine species identification using traditional taxonomical methods is often burdened with taxonomic controversies. Here we discuss the comparatively new concept of DNA barcoding and its significance in marine perspective. This molecular technique can be useful in the assessment of cryptic species which is widespread in marine environment and linking the different life cycle stages to the adult which is difficult to accomplish in the marine ecosystem. Other advantages of DNA barcoding include authentication and safety assessment of seafood, wildlife forensics, conservation genetics and detection of invasive alien species (IAS). Global DNA barcoding efforts in the marine habitat include MarBOL, CeDAMar, CMarZ, SHARK-BOL, etc. An overview on DNA barcoding of different marine groups ranging from the microbes to mammals is revealed. In conjugation with newer and faster techniques like high-throughput sequencing, DNA barcoding can serve as an effective modern tool in marine biodiversity assessment and conservation.
Collapse
Affiliation(s)
- Subrata Trivedi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abdulhadi A. Aloufi
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Abid A. Ansari
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Sankar K. Ghosh
- Department of Biotechnology, Assam University, Silchar 788011, Assam, India
| |
Collapse
|
8
|
Böttger-Schnack R, Schnack D. Development of an interactive identification key for Oncaeidae (Copepoda: Cyclopoida). J NAT HIST 2015. [DOI: 10.1080/00222933.2015.1022614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Cornils A, Blanco-Bercial L. Phylogeny of the Paracalanidae Giesbrecht, 1888 (Crustacea: Copepoda: Calanoida). Mol Phylogenet Evol 2013; 69:861-72. [PMID: 23831457 DOI: 10.1016/j.ympev.2013.06.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 06/21/2013] [Accepted: 06/22/2013] [Indexed: 11/16/2022]
Abstract
The Paracalanidae are ecologically-important marine planktonic copepods that occur in the epipelagic zone in temperate and tropical waters. They are often the dominant taxon - in terms of biomass and abundance - in continental shelf regions. As primary consumers, they form a vital link in the pelagic food web between primary producers and higher trophic levels. Despite the ecological importance of the taxon, evolutionary and systematic relationships within the family remain largely unknown. A multigene phylogeny including 24 species, including representatives for all seven genera, was determined based on two nuclear genes, small-subunit (18S) ribosomal RNA and Histone 3 (H3) and one mitochondrial gene, cytochrome c oxidase subunit I (COI). The molecular phylogeny was well supported by Maximum likelihood and Bayesian inference analysis; all genera were found to be monophyletic, except for Paracalanus, which was separated into two distinct clades: the Paracalanus aculeatus group and Paracalanus parvus group. The molecular phylogeny also confirmed previous findings that Mecynocera and Calocalanus are genera of the family Paracalanidae. For comparison, a morphological phylogeny was created for 35 paracalanid species based on 54 morphological characters derived from published descriptions. The morphological phylogeny did not resolve all genera as monophyletic and bootstrap support was not strong. Molecular and morphological phylogenies were not congruent in the positioning of Bestiolina and the Paracalanus species groups, possibly due to the lack of sufficient phylogenetically-informative morphological characters.
Collapse
Affiliation(s)
- Astrid Cornils
- Alfred Wegener Institute for Polar and Marine Research, Am alten Hafen 26, 27568 Bremerhaven, Germany.
| | | |
Collapse
|
10
|
Cepeda GD, Blanco-Bercial L, Bucklin A, Berón CM, Viñas MD. Molecular systematic of three species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: comparative analysis using 28S rDNA. PLoS One 2012; 7:e35861. [PMID: 22558245 PMCID: PMC3338805 DOI: 10.1371/journal.pone.0035861] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 03/23/2012] [Indexed: 11/30/2022] Open
Abstract
Species of Oithona (Copepoda, Cyclopoida) are highly abundant, ecologically important, and widely distributed throughout the world oceans. Although there are valid and detailed descriptions of the species, routine species identifications remain challenging due to their small size, subtle morphological diagnostic traits, and the description of geographic forms or varieties. This study examined three species of Oithona (O. similis, O. atlantica and O. nana) occurring in the Argentine sector of the South Atlantic Ocean based on DNA sequence variation of a 575 base-pair region of 28S rDNA, with comparative analysis of these species from other North and South Atlantic regions. DNA sequence variation clearly resolved and discriminated the species, and revealed low levels of intraspecific variation among North and South Atlantic populations of each species. The 28S rDNA region was thus shown to provide an accurate and reliable means of identifying the species throughout the sampled domain. Analysis of 28S rDNA variation for additional species collected throughout the global ocean will be useful to accurately characterize biogeographical distributions of the species and to examine phylogenetic relationships among them.
Collapse
Affiliation(s)
- Georgina D Cepeda
- Instituto Nacional de Investigación y Desarrollo Pesquero (INIDEP), Mar del Plata, Argentina.
| | | | | | | | | |
Collapse
|