1
|
Borocci S, Grandinetti F, Sanna N, Antoniotti P, Nunzi F. Noncovalent Complexes of the Noble-Gas Atoms: Analyzing the Transition from Physical to Chemical Interactions. J Comput Chem 2019; 40:2318-2328. [PMID: 31254471 DOI: 10.1002/jcc.26010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 01/04/2023]
Abstract
The bonding character of the noncovalent complexes of the noble-gas (Ng) atoms ranges from nearly purely dispersive contacts to interactions featuring appreciable contributions of induction and charge transfer. In this study, we discuss a new quantitative index that seems peculiarly informative about these diverse bonding situations. This index was termed as the degree of polarization (DoP) of Ng, as it measures, in essence, the Ng polarization promoted by the binding partner. The definition of the DoP(Ng) relies on the analysis of the local electron energy density H(r), and its physical meaning was best appreciated by studying also the charge-displacement function and the molecular electrostatic potential of the investigated benchmark species, that include nearly 60 Ngs complexes of different bonding character. The DoP(Ng) appears of general applicability, and is also positively correlated with other bonding character indices. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Stefano Borocci
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.,Istituto per i Sistemi Biologici del CNR, Via Salaria, Km 29.500, 00015 Monterotondo, Rome, Italy
| | - Felice Grandinetti
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy.,Istituto per i Sistemi Biologici del CNR, Via Salaria, Km 29.500, 00015 Monterotondo, Rome, Italy
| | - Nico Sanna
- Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali (DIBAF), Università della Tuscia, L.go dell'Università, s.n.c., 01100 Viterbo, Italy
| | - Paola Antoniotti
- Dipartimento di Chimica, Università di Torino, Via Pietro Giuria, 7 10125 Torino, Italy
| | - Francesca Nunzi
- Dipartimento di Chimica, Biologia e Biotecnologie (DCBB), Via Elce di Sotto, 8 06123 Perugia, Italy.,Istituto di Scienze e Tecnologie Molecolari del CNR (ISTM-CNR), Via Elce di Sotto, 8 06123 Perugia, Italy
| |
Collapse
|
2
|
Fu H, Zheng R, Zheng L. Theoretical studies of three-dimensional potential energy surfaces using neural networks and rotational spectra of the Ar–N2complex. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1085603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
3
|
Dham AK, McBane GC, McCourt FRW, Meath WJ. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. II. Molecular beam scattering and bulk gas phenomena in Ne-CO mixtures. J Chem Phys 2010; 132:024308. [PMID: 20095675 DOI: 10.1063/1.3285721] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Four potential energy surfaces are of current interest for the Ne-CO interaction. Two are high-level fully ab initio surfaces obtained a decade ago using symmetry-adapted perturbation theory and supermolecule coupled-cluster methods. The other two are very recent exchange-Coulomb (XC) model potential energy surfaces constructed by using ab initio Heitler-London interaction energies and literature long range dispersion and induction energies, followed by the determination of a small number of adjustable parameters to reproduce a selected subset of pure rotational transition frequencies for the (20)Ne-(12)C(16)O van der Waals cluster. Testing of the four potential energy surfaces against a wide range of available experimental microwave, millimeter-wave, and mid-infrared Ne-CO transition frequencies indicated that the XC potential energy surfaces gave results that were generally far superior to the earlier fully ab initio surfaces. In this paper, two XC model surfaces and the two fully ab initio surfaces are tested for their abilities to reproduce experiment for a wide range of nonspectroscopic Ne-CO gas mixture properties. The properties considered here are relative integral cross sections and the angle dependence of rotational state-to-state differential cross sections, rotational relaxation rate constants for CO(v=2) in Ne-CO mixtures at T=296 K, pressure broadening of two pure rotational lines and of the rovibrational lines in the CO fundamental and first overtone transitions at 300 K, and the temperature and, where appropriate, mole fraction dependencies of the interaction second virial coefficient, the binary diffusion coefficient, the interaction viscosity, the mixture shear viscosity and thermal conductivity coefficients, and the thermal diffusion factor. The XC model potential energy surfaces give results that lie within or very nearly within the experimental uncertainties for all properties considered, while the coupled-cluster ab initio surface gives results that agree similarly well for all but one of the properties considered. When the present comparisons are combined with the ability to give accurate spectroscopic transition frequencies for the Ne-CO van der Waals complex, only the XC potential energy surfaces give results that agree well with all extant experimental data for the Ne-CO interaction.
Collapse
Affiliation(s)
- Ashok K Dham
- Department of Physics, Punjabi University, Patiala 147002, India
| | | | | | | |
Collapse
|
4
|
Dham AK, McCourt FRW, Meath WJ. An exchange-Coulomb model potential energy surface for the Ne-CO interaction. I. Calculation of Ne-CO van der Waals spectra. J Chem Phys 2009; 130:244310. [PMID: 19566156 DOI: 10.1063/1.3157169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Exchange-Coulomb model potential energy surfaces have been developed for the Ne-CO interaction. The initial model is a three-dimensional potential energy surface based upon computed Heitler-London interaction energies and literature results for the long-range induction and dispersion energies, all as functions of interspecies distance, the orientation of CO relative to the interspecies axis, and the bond length of the CO molecule. Both a rigid-rotor model potential energy surface, obtained by setting the CO bond length equal to its experimental spectroscopic equilibrium value, and a vibrationally averaged model potential energy surface, obtained by averaging the stretching dependence over the ground vibrational motion of the CO molecule, have been constructed from the full data set. Adjustable parameters in each model potential energy surface have been determined through fitting a selected subset of pure rotational transition frequencies calculated for the (20)Ne-(12)C(12)O isotopolog to precisely known experimental values. Both potential energy surfaces provide calculated results for a wide range of available experimental microwave, millimeter-wave, and midinfrared Ne-CO transition frequencies that are generally far superior to those obtained using the best current literature potential energy surfaces. The vibrationally averaged CO ground state potential energy surface, employed together with a potential energy surface obtained from it by replacing the ground vibrational state average of the CO stretching dependence of the potential energy surface by an average over the first excited CO vibrational state, has been found to be particularly useful for computing and/or interpreting mid-IR transition frequencies in the Ne-CO dimer.
Collapse
Affiliation(s)
- Ashok K Dham
- Department of Physics, Punjabi University, Patiala 147002, India
| | | | | |
Collapse
|
5
|
Kumar A, Jhanwar BL, Meath W. Dipole oscillator strength distributions, properties, and dispersion energies for ethylene, propene, and 1-butene. CAN J CHEM 2007. [DOI: 10.1139/v07-057] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A recommended isotropic dipole oscillator strength distribution (DOSD) has been constructed for the ethylene molecule through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength (DOS) data; the DOS data employed are recent experimental results not available at the time of the original constrained DOSD analysis of this molecule. The constraints are furnished by molar refractivity data and the Thomas–Reiche–Kuhn sum rule. The DOSD is used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for ethylene. Pseudo-DOSDs for this molecule, and for propene and 1–butene, which are based on an earlier constrained DOSD analysis for these molecules, are developed. They are used to obtain reliable results for the isotropic dipole–dipole dispersion-energy coefficients C6, for the interactions of the alkenes with each other and with 47 other species, and the triple-dipole dispersion-energy coefficients C9 for interactions involving any triple of molecules taken from ethylene, propene, and 1–butene.Key words: alkenes, dipole properties, pseudo-states, dipole–dipole and triple-dipole dispersion energies, long-range additive, non-additive interaction energies.
Collapse
|
6
|
Dham AK, McCourt FRW, Dickinson AS. Accuracy of recent potential energy surfaces for the He–N2 interaction. I. Virial and bulk transport coefficients. J Chem Phys 2007; 127:054302. [PMID: 17688335 DOI: 10.1063/1.2753483] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
A new exchange-Coulomb semiempirical model potential energy surface for the He-N2 interaction has been developed. Together with two recent high-level ab initio potential energy surfaces, it has been tested for the reliability of its predictions of second-virial coefficients and bulk transport phenomena in binary mixtures of He and N2. The agreement with the relevant available measurements is generally within experimental uncertainty for the exchange-Coulomb surface and the ab initio surface of Patel et al. [J. Chem. Phys. 119, 909 (2003)], but with slightly poorer agreement for the earlier ab initio surface of Hu and Thakkar [J. Chem. Phys. 104, 2541 (1996)].
Collapse
Affiliation(s)
- Ashok K Dham
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | |
Collapse
|
7
|
Dham AK, Meath WJ, Jechow JW, McCourt FRW. New exchange-Coulomb N2-Ar potential-energy surface and its comparison with other recent N2-Ar potential-energy surfaces. J Chem Phys 2007; 124:034308. [PMID: 16438584 DOI: 10.1063/1.2159001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The reliability of five N2-Ar potential-energy surfaces in representing the N2-Ar interaction has been investigated by comparing their abilities to reproduce a variety of experimental results, including interaction second viral coefficients, bulk transport properties, relaxation phenomena, differential scattering cross sections, and the microwave and infrared spectra of the van der Waals complexes. Four of the surfaces are the result of high-level ab initio quantal calculations; one of them utilized fine tuning by fitting to microwave data. To date, these four potential-energy surfaces have only been tested against experimental microwave data. The fifth potential-energy surface, based upon the exchange-Coulomb potential-energy model for the interaction of closed-shell species, is developed herein: it is a combination of a damped dispersion energy series and ab initio calculations of the Heitler-London interaction energy, and has adjustable parameters determined by requiring essentially simultaneous agreement with selected quality interaction second viral coefficient and microwave data. Comparisons are also made with the predictions of three other very good literature potential-energy surfaces, including the precursor of the new exchange-Coulomb potential-energy surface developed here. Based upon an analysis of a large body of information, the new exchange-Coulomb and microwave-tuned ab initio potential-energy surfaces provide the best representations of the N2-Ar interaction; nevertheless, the other potential-energy surfaces examined still have considerable merit with respect to the prediction of specific properties of the N2-Ar van der Waals complex. Of the two recommended surfaces, the new exchange-Coulomb surface is preferred on balance due to its superior predictions of the effective cross sections related to various relaxation phenomena, and to its reliable, and relatively simple, representation of the long-range part of the potential-energy surface. Moreover, the flexibility still inherent in the exchange-Coulomb potential form can be further exploited, if required, in future studies of the N2-Ar interaction.
Collapse
Affiliation(s)
- Ashok K Dham
- Department of Physics, Punjabi University, Patiala 147002, India
| | | | | | | |
Collapse
|
8
|
Wheatley RJ, Tulegenov AS, Bichoutskaia * E. Intermolecular potentials from supermolecule and monomer calculations. INT REV PHYS CHEM 2007. [DOI: 10.1080/014423504200207772] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Akyl S. Tulegenov
- a School of Chemistry , University of Nottingham , Nottingham NG7 2RD, UK
| | | |
Collapse
|
9
|
Wei H, Le Roy RJ, Wheatley R, Meath WJ. A reliable new three-dimensional potential energy surface for H2–Kr. J Chem Phys 2005; 122:84321. [PMID: 15836053 DOI: 10.1063/1.1850462] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An improved three-dimensional potential energy surface for the H(2)-Kr system is determined from a direct fit of new infrared spectroscopic data for H(2)-Kr and D(2)-Kr to a potential energy function form based on the exchange-Coulomb model for the intermolecular interaction energy. These fits require repetitive, highly accurate simulations of the observed spectra, and both the strength of the potential energy anisotropy and the accuracy of the new data make the "secular equation perturbation theory" method used in previous analyses of H(2)-(rare gas) spectra inadequate for the present work. To address this problem, an extended version of the "iterative secular equation" method was developed which implements direct Hellmann-Feynman theorem calculation of the partial derivatives of eigenvalues with respect to parameters of the Hamiltonian which are required for the fits.
Collapse
Affiliation(s)
- Hua Wei
- Guelph-Waterloo Center for Graduate Work in Chemistry and Biochemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | | | | |
Collapse
|
10
|
Kumar A, Jhanwar BL, Meath WJ. Dipole Oscillator Strength Distributions and Properties for Methanol, Ethanol and Propan-1-ol and Related Dispersion Energies. ACTA ACUST UNITED AC 2005. [DOI: 10.1135/cccc20051196] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recommended isotropic dipole oscillator strength distributions (DOSDs) have been constructed for the methanol and ethanol molecules through the use of quantum mechanical constraint techniques and experimental dipole oscillator strength (DOS) data; the DOS data employed are recent experimental results not available at the time of the original constrained DOSD analysis of these molecules. The constraints are furnished by molar refractivity data and the Thomas-Reiche-Kuhn sum rule. The DOSDs are used to evaluate a variety of isotropic dipole oscillator strength sums, logarithmic dipole oscillator strength sums, and mean excitation energies for the molecules. Pseudo-DOSDs for these molecules, and for propan-1-ol based on an earlier constrained DOSD analysis for this molecule, are also presented. They are used to obtain reliable results for the isotropic dipole-dipole dispersion energy coefficients C6, for the interactions of the alcohols with each other and with 36 other species, and the triple-dipole dispersion energy coefficients C9for interactions involving any triple of molecules involving methanol, ethanol and propan-1-ol.
Collapse
|
11
|
Munteanu CR, López Cacheiro J, Fernández B. Accurate intermolecular ground state potential of the Ne–N2 van der Waals complex. J Chem Phys 2004; 120:9104-12. [PMID: 15267846 DOI: 10.1063/1.1695330] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ab initio ground state potential energy surfaces are obtained from interaction energies calculated with the coupled cluster singles and doubles model including connected triples corrections [CCSD(T)] and the aug-cc-pVXZ (X=5,Q,T,D) basis sets augmented with two different sets of midbond functions (denoted 33221 and 33211). The aug-cc-pV5Z-33221 surface is characterized by a T-shaped 49.5 cm(-1) minimum at Re=3.38 Angstroms and a linear saddle point at 3.95 Angstroms with De=36.6 cm(-1). These results agree well with the values provided by the accurate semiempirical potentials available. The rovibronic spectroscopic properties are determined and compared to the available experimental data and previous theoretical results. We study the basis set convergence of the intermolecular potentials and the rotational frequencies. The aug-cc-pVTZ basis sets provide reasonable binding parameters, but seem not to be converged enough for the evaluation of the microwave spectra. The aug-cc-pVQZ basis sets considerably improve the triple zeta results. The differences between the results obtained with the aug-cc-pVTZ-33221 basis set surface and those with the aug-cc-pVQZ-33221 are smaller than those of the corresponding bases with the set of 33211 midbond functions. The aug-cc-pVQZ surfaces are close to the aug-cc-pV5Z, that are expected to be close to convergence. With our best surfaces the errors in the frequencies with respect to the accurate experimental results go down to 0.6%.
Collapse
Affiliation(s)
- Cristian R Munteanu
- Department of Physical Chemistry, Faculty of Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain
| | | | | |
Collapse
|
12
|
Patel K, Butler PR, Ellis AM, Wheeler MD. Ab initio study of Rg–N2 and Rg–C2 van der Waals complexes (Rg=He, Ne, Ar). J Chem Phys 2003. [DOI: 10.1063/1.1579464] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
KUMAR ASHOK, KUMAR MUKESH, MEATH WILLIAMJ. Dipole oscillator strengths, dipole properties and dispersion energies for SiF4. Mol Phys 2003. [DOI: 10.1080/0026897031000092986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Kumar A, Kumar M, Meath WJ. Dipole oscillator strength properties and dispersion energies for SiH4. Chem Phys 2003. [DOI: 10.1016/s0301-0104(02)00926-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
Patkowski K, Korona T, Moszynski R, Jeziorski B, Szalewicz K. Ab initio potential energy surface and second virial coefficient for He–H2O complex. ACTA ACUST UNITED AC 2002. [DOI: 10.1016/s0166-1280(02)00244-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|