Ding H, Morse MD, Apetrei C, Chacaga L, Maier JP. Resonant two-photon ionization spectroscopy of BNB.
J Chem Phys 2006;
125:194315. [PMID:
17129111 DOI:
10.1063/1.2390713]
[Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Triatomic BNB has been produced by laser ablation of a boron nitride rod in a supersonic expansion of helium carrier gas and has been investigated using resonant two-photon ionization spectroscopy in the visible region. The B 2Pi(g)-X 2Sigma(u)+ band system has been recorded near 514 nm and is dominated by a strong origin band, which has been rotationally resolved and analyzed. Both the (11)B(14)N(11)B (64% natural abundance) and the (10)B(14)N(11)B (32% natural abundance) isotopic modifications have been analyzed, leading to the spectroscopic constants (and their 1sigma error limits) of B0"(X 2Sigma(u)+)=0.466 147(70), B0'(B 2Pi(g))=0.467 255(75), and A0'(B 2Pi(g))=6.1563(38) cm(-1) for (10)B(14)N(11)B, corresponding to r(B-N)"(X 2Sigma(u)+)=1.312 47(10) A and r(B-N)'(B 2Pi(g))=1.310 92(11) A. Very similar values are obtained for the more abundant isotopomer, (11)B(14)N(11)B: B0"(X 2Sigma(u)+)=0.444 493(69), B0'(B 2Pi(g))=0.445 606(70), A0'(B 2Pi(g))=6.1455(38) cm(-1), corresponding to r(B-N)"(X 2Sigma(u)+)=1.312 41(10) A and r(B-N)'(B 2Pi(g))=1.310 77(10) A. These results are discussed as they relate to Walsh's rules and are compared to results for related molecules.
Collapse