1
|
Yu Y, Yang D, Zhou Y, Xie D. A New Full-Dimensional Ab Initio Intermolecular Potential Energy Surface and Rovibrational Energies of the H 2O-H 2 Complex. J Phys Chem A 2024; 128:170-181. [PMID: 38109882 DOI: 10.1021/acs.jpca.3c06805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
H2O-H2 is a prototypical five-atom van der Waals system, and the interaction between H2O and H2 plays an important role in many physical and chemical environments. However, previous full-dimensional intermolecular potential energy surfaces (IPESs) cannot accurately describe the H2O-H2 interaction in the repulsive or van der Waals minimum region. In this work, we constructed a full-dimensional IPES for the title system with a small root-mean-square error of 0.252 cm-1 by using the permutation invariant polynomial neural network method. The ab initio calculations were performed by employing the explicitly corrected coupled cluster [CCSD(T)-F12a] method with the augmented correlation-consistent polarized valence quintuple-ζ basis set. Based on the newly developed IPES, the bound states of the H2O-H2 complex were calculated within the rigid-rotor approximation. The transition frequencies and band origins agreed well with the experimental values [Weida, M. J.; Nesbitt, D. J. J. Chem. Phys. 1999, 110, 156-167] with errors less than 0.1 cm-1 for most transitions. Those results demonstrate the high accuracy of our new IPES, which would build a solid foundation for the collisional dynamics of H2O-H2 at low temperatures.
Collapse
Affiliation(s)
- Yipeng Yu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
2
|
Lv J, Yang D, Tian Y, Zhao A, Wang H, Shi L, Zheng R. Theoretical investigation of potential energy surface and bound states for the N 2-OCS van der Waals complex. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117768. [PMID: 31708460 DOI: 10.1016/j.saa.2019.117768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/06/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
In this work we report an ab initio intermolecular potential energy surface and theoretically spectroscopic studies for N2-OCS complex. A four-dimensional intermolecular potential energy surface (4D PES) is constructed at the level of single and double excitation coupled-cluster method with a non-iterative perturbation treatment of triple excitations [CCSD(T)] with aug-cc-pVTZ basis set supplemented with bond functions. A global minimum corresponding to a planar and nearly T-shaped structure, which has been observed experimentally, is located at R = 3.96 Å, θ1 = 8 or 172°, θ2 = 75°, φ = 180 or 0° with a well depth of 271.078 cm-1 on the potential energy surface. The local minimum corresponding to a linear geometry is also found at R = 5.06 Å, θ1 = 2 or 178°, θ2 = 179°, φ = 0 or 180° with a well depth of 224.743 cm-1. The bound state calculations have been performed for the complex by approximating the N2 and OCS molecules as the rigid rotors. The calculated structural parameters and rotational transition frequencies are in good agreement with the experimental observed values. Based on the ab initio PES, the tunneling splitting is calculated to be 0.052 cm-1 for the ground vibrational state, which can just reproduce 64% of experimental observation (0.082 cm-1). A refined method is used to calculate the tunneling splitting, and a much better result is obtained with the value of 0.094 cm-1.
Collapse
Affiliation(s)
- Jian Lv
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Dapeng Yang
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Yanshan Tian
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Aiqing Zhao
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Hongli Wang
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Lipeng Shi
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Rui Zheng
- School of Physics and Electronics, North China University of Water Resources and Electric Power, Zhengzhou 450011, China.
| |
Collapse
|
3
|
Zheng R, Zheng L, Yang M. Investigating the influence of intramolecular bond lengths on the intermolecular interaction of H 2-AgCl complex: Binding energy, intermolecular vibrations, and isotope effects. J Chem Phys 2019; 150:164301. [PMID: 31042886 DOI: 10.1063/1.5085751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, we performed a theoretical study on the influence of intramolecular bond lengths on the intermolecular interactions between H2 and AgCl molecules. Using four sets of bond lengths for the monomers of H2 and AgCl, four-dimensional intermolecular potential energy surfaces (PESs) were constructed from ab initio data points at the level of single and double excitation coupled cluster method with noniterative perturbation treatment of triple excitations. A T-shaped global minimum was found on the PES. Interestingly, both the binding energies and Ag-H2 distances present a linear relationship with the intramolecular bond lengths of H2-AgCl. The accuracy of these PESs was validated by the available spectroscopic data via the bound state calculations, and the predicted rotational transition frequencies can reproduce the experimental observations with a root-mean-squared error of 0.0003 cm-1 based on the PES constructed with r(H-H) and r(Ag-Cl) fixed at 0.795 and 2.261 Å, respectively. The intermolecular vibrational modes were assigned unambiguously with a simple pattern by analyzing the wave functions. Isotope effects were also investigated by the theoretical calculations, and the results are in excellent agreement with the available spectroscopic data. The transition frequencies for the isotopolog D2-AgCl are predicted with the accuracy of 0.3 MHz.
Collapse
Affiliation(s)
- Rui Zheng
- School of Mathematics and Information Science, North China University of Water Resources and Electric Power, Zhengzhou 450011, China
| | - Limin Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Minghui Yang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
4
|
Liu JM, Zhang XL, Zhai Y, Li H. Theoretical Study of Infrared Spectra of OCS-( pH 2) 2, OCS-( oD 2) 2, OCS-(HD) 2, and Mixed OCS- pH 2-He Trimers. J Phys Chem A 2018; 122:2915-2926. [DOI: 10.1021/acs.jpca.7b12708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jing-Min Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Xiao-Long Zhang
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China
| |
Collapse
|
5
|
Liu JM, Zhai Y, Li H. Explicit correlation treatment of the six-dimensional potential energy surface and predicted infrared spectra for OCS–H2. J Chem Phys 2017; 147:044313. [DOI: 10.1063/1.4996086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jing-Min Liu
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People’s Republic of China
| | - Yu Zhai
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People’s Republic of China
| | - Hui Li
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, People’s Republic of China
| |
Collapse
|
6
|
Raston PL, Jäger W. Rotational Spectroscopic Study of Quantum Solvation in Isotopologic ( pH 2) N–CO Clusters. J Phys Chem A 2017; 121:3671-3678. [DOI: 10.1021/acs.jpca.7b02192] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Paul L. Raston
- Department
of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807, United States
| | - Wolfgang Jäger
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
Raston PL, Jäger W. Microwave spectroscopy of the seeded binary and ternary clusters CO-(pH2)2, CO-pH2-He, CO-HD, and CO-(oD2)(N=1,2). J Chem Phys 2015; 142:144308. [PMID: 25877579 DOI: 10.1063/1.4917420] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report the Fourier transform microwave spectra of the a-type J = 1-0 transitions of the binary and ternary CO-(pH2)2, CO-pH2-He, CO-HD, and CO-(oD2)N=1,2 clusters. In addition to the normal isotopologue of CO for all clusters, we observed the transitions of the minor isotopologues, (13)C(16)O, (12)C(18)O, and (13)C(18)O, for CO-(pH2)2 and CO-pH2-He. All transitions lie within 335 MHz of the experimentally or theoretically predicted values. In comparison to previously reported infrared spectra [Moroni et al., J. Chem. Phys. 122, 094314 (2005)], we are able to tentatively determine the vibrational shift for CO-pH2-He, in addition to its b-type J = 1-0 transition frequency. The a-type frequency of CO-pH2-He is similar to that of CO-He2 [Surin et al., Phys. Rev. Lett. 101, 233401 (2008)], suggesting that the pH2 molecule has a strong localizing effect on the He density. Perturbation theory analysis of CO-oD2 reveals that it is approximately T-shaped, with an anisotropy of the intermolecular potential amounting to ∼9 cm(-1).
Collapse
Affiliation(s)
- Paul L Raston
- Department of Chemistry, University of Adelaide, SA 5005, Australia
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
8
|
|
9
|
Berg M, Accardi A, Paulus B, Schmidt B. Rotationally adiabatic pair interactions of para- and ortho-hydrogen with the halogen molecules F2, Cl2, and Br2. J Chem Phys 2014; 141:074303. [PMID: 25149782 DOI: 10.1063/1.4892599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present work is concerned with the weak interactions between hydrogen and halogen molecules, i.e., the interactions of pairs H2-X2 with X = F, Cl, Br, which are dominated by dispersion and quadrupole-quadrupole forces. The global minimum of the four-dimensional (4D) coupled cluster with singles and doubles and perturbative triples (CCSD(T)) pair potentials is always a T shaped structure where H2 acts as the hat of the T, with well depths (De) of 1.3, 2.4, and 3.1 kJ/mol for F2, Cl2, and Br2, respectively. MP2/AVQZ results, in reasonable agreement with CCSD(T) results extrapolated to the basis set limit, are used for detailed scans of the potentials. Due to the large difference in the rotational constants of the monomers, in the adiabatic approximation, one can solve the rotational Schrödinger equation for H2 in the potential of the X2 molecule. This yields effective two-dimensional rotationally adiabatic potential energy surfaces where pH2 and oH2 are point-like particles. These potentials for the H2-X2 complexes have global and local minima for effective linear and T-shaped complexes, respectively, which are separated by 0.4-1.0 kJ/mol, where oH2 binds stronger than pH2 to X2, due to higher alignment to minima structures of the 4D-pair potential. Further, we provide fits of an analytical function to the rotationally adiabatic potentials.
Collapse
Affiliation(s)
- Matthias Berg
- Institut für Chemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Antonio Accardi
- Institut für Chemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Beate Paulus
- Institut für Chemie, Freie Universität Berlin, Takustr. 3, D-14195 Berlin, Germany
| | - Burkhard Schmidt
- Institut für Mathematik, Freie Universität Berlin, Arnimallee 6, D-14195 Berlin, Germany
| |
Collapse
|
10
|
|
11
|
Wang L, Xie D, Le Roy RJ, Roy PN. A new six-dimensional potential energy surface for H2–N2O and its adiabatic-hindered-rotor treatment. J Chem Phys 2013; 139:034312. [DOI: 10.1063/1.4813527] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
12
|
Sun X, Hu Y, Zhu H. Ab initio potential energy surface and predicted rotational spectra for the Ne–H2O complex. J Chem Phys 2013; 138:204312. [DOI: 10.1063/1.4807497] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
Sun C, Shao X, Yu C, Feng E, Huang W. A three-dimensional potential energy surface and infrared spectra for the Kr–OCS van der Waals complex. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.08.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
CHEN MIN, ZHU HUA. POTENTIAL ENERGY SURFACE, MICROWAVE AND INFRARED SPECTRA OF THE Xe–CO2 COMPLEX FROM AB INITIO CALCULATIONS. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2012. [DOI: 10.1142/s0219633612500332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We present a new three-dimensional potential energy surface for Xe–CO2 including the Q3 normal mode for the υ3 antisymmetric stretching vibration of the CO2 molecule. Two vibrationally adiabatic potentials with CO2 in both the ground (υ3 = 0) and the first excited (υ3 = 1) states are generated by the integration of this potential over the Q3 coordinate. Each potential is found to have a T-shaped global minimum. The radial DVR/angular FBR method and the Lanczos algorithm are employed to calculate the rovibrational energy levels. The calculated band origin shifts, microwave and infrared spectra based on the two averaged potentials are in good agreement with the available experimental data.
Collapse
Affiliation(s)
- MIN CHEN
- School of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - HUA ZHU
- School of Chemistry, Sichuan University, Chengdu 610064, P. R. China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
15
|
Michaud JM, Topic WC, Jäger W. Spectroscopic and Theoretical Study of the Weakly Bound H2−HCCCN Dimer. J Phys Chem A 2011; 115:9456-66. [DOI: 10.1021/jp111812k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Julie M. Michaud
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wendy C. Topic
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Wolfgang Jäger
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
16
|
Chen R, Jiao E, Zhu H, Xie D. A new ab initio potential energy surface and microwave and infrared spectra for the Ne–CO2 complex. J Chem Phys 2010; 133:104302. [DOI: 10.1063/1.3454684] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
17
|
Li H, Roy PN, Le Roy RJ. An “adiabatic-hindered-rotor” treatment allows para-H2 to be treated as if it were spherical. J Chem Phys 2010; 133:104305. [DOI: 10.1063/1.3476465] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Grebenev S, Sartakov BG, Toennies JP, Vilesov AF. Spectroscopic investigation of OCS (p-H2)n (n=1–16) complexes inside helium droplets: Evidence for superfluid behavior. J Chem Phys 2010; 132:064501. [DOI: 10.1063/1.3274509] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
Cui Y, Ran H, Xie D. A new potential energy surface and predicted infrared spectra of the Ar-CO(2) van der Waals complex. J Chem Phys 2009; 130:224311. [PMID: 19530772 DOI: 10.1063/1.3152990] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A new potential energy surface for Ar-CO(2) is constructed at the coupled-cluster singles and doubles with noniterative inclusion of connected triple [CCSD(T)] level with augmented correlation-consistent triple-zeta (aug-cc-pVTZ) basis set plus midpoint bond functions. The Q(3) normal mode for the v(3) antisymmetric stretching vibration of CO(2) is involved in the construction of the potential. Effective two-dimensional potentials with CO(2) in the ground and first excited v(3) vibrational states are obtained by averaging a three-dimensional potential for each case over the Q(3) asymmetric stretch vibrational coordinate. Both potentials have only a T-shaped minimum with a well depth of 200.97 and 201.37 cm(-1), respectively. No linear local minima are detected. The radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm are employed to calculate the related rovibrational energy levels. The calculated band origin shift of the complex agrees very well with the observed one (-0.474 versus -0.470 cm(-1)). In addition, the predicted infrared spectra based on the two averaged potentials are in excellent agreement with the available experimental data, which again testifies the accuracy of the new potentials.
Collapse
Affiliation(s)
- Yali Cui
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
20
|
Zhu H, Xie D. N(2)O in small para-hydrogen clusters: Structures and energetics. J Comput Chem 2009; 30:841-6. [PMID: 19165775 DOI: 10.1002/jcc.21207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We present the minimum-energy structures and energetics of clusters of the linear N(2)O molecule with small numbers of para-hydrogen molecules with pairwise additive potentials. Interaction energies of (p-H(2))-N(2)O and (p-H(2))-(p-H(2)) complexes were calculated by averaging the corresponding full-dimensional potentials over the H(2) angular coordinates. The averaged (p-H(2))-N(2)O potential has three minima corresponding to the T-shaped and the linear (p-H(2))-ONN and (p-H(2))-NNO structures. Optimization of the minimum-energy structures was performed using a Genetic Algorithm. It was found that p-H(2) molecules fill three solvation rings around the N(2)O axis, each of them containing up to five p-H(2) molecules, followed by accumulation of two p-H(2) molecules at the oxygen and nitrogen ends. The first solvation shell is completed at N = 17. The calculated chemical potential oscillates with cluster size up to the completed first solvation shell. These results are consistent with the available experimental measurements.
Collapse
Affiliation(s)
- Hua Zhu
- School of Chemistry, Sichuan University, Chengdu 610064, People's Republic of China.
| | | |
Collapse
|
21
|
Michaud JM, Jäger W. Rotational spectroscopic study of carbonyl sulfide solvated with hydrogen molecules. J Chem Phys 2008; 129:144311. [DOI: 10.1063/1.2976167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
22
|
Ran H, Xie D. A new potential energy surface and predicted infrared spectra of He–CO2: Dependence on the antisymmetric stretch of CO2. J Chem Phys 2008; 128:124323. [DOI: 10.1063/1.2844786] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
23
|
Cappelletti D, Pirani F, Bussery-Honvault B, Gomez L, Bartolomei M. A bond–bond description of the intermolecular interaction energy: the case of weakly bound N2–H2 and N2–N2 complexes. Phys Chem Chem Phys 2008; 10:4281-93. [DOI: 10.1039/b803961e] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Yu Z, Higgins KJ, Klemperer W, McCarthy MC, Thaddeus P, Liao K, Jäger W. Rotational spectra of the van der Waals complexes of molecular hydrogen and OCS. J Chem Phys 2007; 127:054305. [PMID: 17688338 DOI: 10.1063/1.2756534] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The a- and b-type rotational transitions of the weakly bound complexes formed by molecular hydrogen and OCS, para-H2-OCS, ortho-H2-OCS, HD-OCS, para-D2-OCS, and ortho-D2-OCS, have been measured by Fourier transform microwave spectroscopy. All five species have ground rotational states with total rotational angular momentum J=0, regardless of whether the hydrogen rotational angular momentum is j=0 as in para-H2, ortho-D2, and HD or j=1 as in ortho-H2 and para-D2. This indicates quenching of the hydrogen angular momentum for the ortho-H2 and para-D2 species by the anisotropy of the intermolecular potential. The ground states of these complexes are slightly asymmetric prolate tops, with the hydrogen center of mass located on the side of the OCS, giving a planar T-shaped molecular geometry. The hydrogen spatial distribution is spherical in the three j=0 species, while it is bilobal and oriented nearly parallel to the OCS in the ground state of the two j=1 species. The j=1 species show strong Coriolis coupling with unobserved low-lying excited states. The abundance of para-H2-OCS relative to ortho-H2-OCS increases exponentially with decreasing normal H2 component in H2He gas mixtures, making the observation of para-H2-OCS in the presence of the more strongly bound ortho-H2-OCS dependent on using lower concentrations of H2. The determined rotational constants are A=22 401.889(4) MHz, B=5993.774(2) MHz, and C=4602.038(2) MHz for para-H2-OCS; A=22 942.218(6) MHz, B=5675.156(7) MHz, and C=4542.960(7) MHz for ortho-H2-OCS; A=15 970.010(3) MHz, B=5847.595(1) MHz, and C=4177.699(1) MHz for HD-OCS; A=12 829.2875(9) MHz, B=5671.3573(7) MHz, and C=3846.7041(6) MHz for ortho-D2-OCS; and A=13 046.800(3) MHz, B=5454.612(2) MHz, and C=3834.590(2) MHz for para-D2-OCS.
Collapse
Affiliation(s)
- Zhenhong Yu
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Xie D, Ran H, Zhou Y. Potential energy surfaces and predicted infrared spectra for van der Waals complexes: dependence on one intramolecular vibrational coordinate. INT REV PHYS CHEM 2007. [DOI: 10.1080/01442350701437926] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
26
|
Ran H, Zhou Y, Xie D. Five-dimensional ab initio potential energy surface and predicted infrared spectra of H2–CO2 van der Waals complexes. J Chem Phys 2007; 126:204304. [PMID: 17552759 DOI: 10.1063/1.2735612] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The authors present a new five-dimensional potential energy surface for H2-CO2 including the Q3 normal mode for the nu3 antisymmetric stretching vibration of the CO2 molecule. The potential energies were calculated using the supermolecular approach with the full counterpoise correction at the CCSD(T) level with an aug-cc-pVTZ basis set supplemented with bond functions. The global minimum is at two equivalent T-shaped coplanar configurations with a well depth of 219.68 cm-1. The rovibrational energy levels for four species of H2-CO2 (paraH2-, orthoH2-, paraD2-, and orthoD2-CO2) were calculated employing the discrete variable representation (DVR) for radial variables and finite basis representation (FBR) for angular variables and the Lanczos algorithm. Our calculations showed that the off-diagonal intra- and intermolecular vibrational coupling could be neglected, and separation of the intramolecular vibration by averaging the total Hamiltonian with the wave function of a specific vibrational state of CO2 should be a good approximation with high accuracy. The calculated band origin shift in the infrared spectra in the nu3 region of CO2 is -0.113 cm-1 for paraH2-CO2 and -0.099 cm-1 for orthoH2-CO2, which agrees well with the observed values of -0.198 and -0.096 cm-1. The calculated rovibrational spectra for H2-CO2 are consistent with the available experimental spectra. For D2-CO2, it is predicted that only a-type transitions occur for paraD2-CO2, while both a-type and b-type transitions are significant for orthoD2-CO2.
Collapse
Affiliation(s)
- Hong Ran
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
27
|
Lorenz BD, Anderson DT. Infrared spectra of N2O–(ortho-D2)N and N2O–(HD)N clusters trapped in bulk solid parahydrogen. J Chem Phys 2007; 126:184506. [PMID: 17508810 DOI: 10.1063/1.2723740] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
High-resolution infrared spectra of the clusters N2O-(ortho-D2)N and N2O-(HD)N, N=1-4, isolated in bulk solid parahydrogen at liquid helium temperatures are studied in the 2225 cm-1 region of the nu3 antisymmetric stretch of N2O. The clusters form during vapor deposition of separate gas streams of a precooled hydrogen mixture (ortho-D2para-H2 or HDpara-H2) and N2O onto a BaF2 optical substrate held at approximately 2.5 K in a sample-in-vacuum liquid helium cryostat. The cluster spectra reveal the N2O nu3 vibrational frequency shifts to higher energy as a function of N, and the shifts are larger for ortho-D2 compared to HD. These vibrational shifts result from the reduced translational zero-point energy for N2O solvated by the heavier hydrogen isotopomers. These spectra allow the N=0 peak at 2221.634 cm-1, corresponding to the nu3 vibrational frequency of N2O isolated in pure solid parahydrogen, to be assigned. The intensity of the N=0 absorption feature displays a strong temperature dependence, suggesting that significant structural changes occur in the parahydrogen solvation environment of N2O in the 1.8-4.9 K temperature range studied.
Collapse
Affiliation(s)
- Britney D Lorenz
- Department of Chemistry, Fort Lewis College, Durango, Colorado 81301, USA
| | | |
Collapse
|
28
|
Wang L, Yang M, McKellar ARW, Zhang DH. Spectroscopy and potential energy surface of the H2–CO2van der Waals complex: experimental and theoretical studies. Phys Chem Chem Phys 2007; 9:131-7. [PMID: 17164895 DOI: 10.1039/b614849b] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A 4-D ab initio potential energy surface is calculated for the intermolecular interaction of hydrogen and carbon dioxide, using the CCSD(T) method with a large basis set. The surface has a global minimum with a well depth of 212 cm(-1) and an intermolecular distance of 2.98 A for a planar configuration with both the O-C-O and H-H axes perpendicular to the intermolecular axis. Bound state calculations are performed for the H(2)-CO(2) van der Waals complex with H(2) in both the para and ortho spin states, and the binding energy of paraH(2)-CO(2)(50.4 cm(-1)) is found to be significantly less than that of orthoH(2)-CO(2)(71.7 cm(-1)). The surface supports 7 bound intermolecular vibrational states for paraH(2)-CO(2) and 19 for orthoH(2)-CO(2), and the lower rotational levels with J< or = 4 follow an asymmetric rotor pattern. The calculated infrared spectrum of paraH(2)-CO(2) agrees well with experiment. For orthoH(2)-CO(2), the ground state rotational levels allowed by symmetry are found to have (K(a), K(c))=(even, odd) or (odd, even). This somewhat unexpected fact enables the previously observed experimental spectrum to be assigned for the first time, in good agreement with theory, and indicates that the orientation of hydrogen is perpendicular to the intermolecular axis in the ground state of the orthoH(2)-CO(2) complex.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | |
Collapse
|
29
|
Zhou Y, Ran H, Xie D. A five-dimensional potential energy surface and predicted infrared spectra for the N2O-hydrogen complexes. J Chem Phys 2006; 125:174310. [PMID: 17100442 DOI: 10.1063/1.2363992] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a five-dimensional potential energy surface for the N(2)O-hydrogen complex using supermolecular approach with the full counterpoise correction at the coupled-cluster singles and doubles with noniterative inclusion of connected triple level. The normal mode Q(3) for the nu(3) antisymmetric stretching vibration of the N(2)O molecule was included in the calculations of the potential energies. The radial discrete variable representation/angular finite basis representation method and Lanczos algorithm were employed to calculate the rovibrational energy levels for four species of N(2)O-hydrogen complexes (N(2)O-para-H(2), -ortho-H(2), -ortho-D(2), and -para-D(2)) without separating the inter- and intramolecular vibrations. The calculated band origins are all blueshifted relative to the isolated N(2)O molecule and in good agreement with the experimental values. The calculated rotational spectroscopic constants and molecular structures agree well with the available experimental results. The frequencies and line intensities of the rovibrational transitions in the nu(3) region of N(2)O for the van der Waals ground vibrational state were calculated and compared with the observed spectra. The predicted infrared spectra are consistent with the observed spectra and show that the N(2)O-H(2) complexes are mostly a-type transitions while both a-type and b-type transitions are significant for the N(2)O-D(2) complexes.
Collapse
Affiliation(s)
- Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | | | | |
Collapse
|
30
|
Paesani F, Whaley KB. Vibrational shifts of OCS in mixed clusters of parahydrogen and helium. J Chem Phys 2006; 124:234310. [PMID: 16821921 DOI: 10.1063/1.2202318] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We present a detailed theoretical study of the solvation structure and solvent induced vibrational shifts for an OCS molecule embedded in pure parahydrogen clusters and in mixed parahydrogen/helium clusters. The use of two recent OCS-(parahydrogen) and OCS-helium ab initio potential energy surfaces having explicit dependence on the asymmetric stretch of the OCS molecule allows calculation of the frequency shift of the OCS nu(3) vibration as a function of the cluster size and composition. We present results for clusters containing up to a full first solvation shell of parahydrogen (N=17 molecules), and up to M=128-N helium atoms. Due to the greater interaction strength of parahydrogen than helium with OCS, in the mixed clusters the parahydrogen molecules always displace He atoms in the first solvation shell around OCS and form multiple axial rings as in the pure parahydrogen clusters. In the pure clusters, the chemical potential of parahydrogen shows several magic numbers (N=8,11,14) that reflect an enhanced stability of axial rings containing one less molecule than required for complete filling at N=17. Only the N=14 magic number survives in the mixed clusters, as a result of different filling orders of the rings and greater delocalization of both components. The OCS vibration shows a redshift in both pure and mixed clusters, with N-dependent values that are in good agreement with the available experimental data. The dependence of the frequency shift on the cluster size and its composition is analyzed in terms of the parahydrogen and helium density distributions around the OCS molecule as a function of N and M. The frequency shift is found to be strongly dependent on the detailed distribution of the parahydrogen molecules in the pure parahydrogen clusters, and to be larger but show a smoother dependence on N in the presence of additional helium, consistent with the more delocalized nature of the mixed clusters.
Collapse
Affiliation(s)
- F Paesani
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA.
| | | |
Collapse
|