1
|
Brumby PE, Kowaguchi A, Nozawa T, Yasuoka K, Wensink HH. Pre-Smectic Ordering and the Unwinding Helix in Monte Carlo Simulations of Cholesteric Liquid-Crystals. J Phys Chem B 2023; 127:7194-7204. [PMID: 37540189 DOI: 10.1021/acs.jpcb.3c02018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
In this paper, molecular chirality is studied for liquid-crystal fluids represented by hard rods with the addition of an attractive chiral dispersion term. Chiral forces between molecular pairs are assumed to be long-ranged and are described in terms of the pseudotensor of Goossens [W. J. A. Goossens, Mol. Cryst. Liq. Cryst. 1971, 12, 237-244]. Following Varga and Jackson [S. Varga and G. Jackson, Chem. Phys. Lett. 2003, 377, 6-12], this is combined with a hard-spherocylinder core. We investigate the relationship between molecular chirality and the helical pitch of the system, which occurs in the absence of full three-dimensional periodic boundary conditions. The dependence of the wavenumber of this pitch on the thermodynamic variables, temperature, and density is measured. We also explore the use of a novel surface boundary interaction model. As a result of this approach, we are able to lower the temperature of the system without the occurrence of nematic droplets, which would interfere with the formation of a uniaxial pitch. Regarding the theoretical predictions of Wensink and Jackson [H. H. Wensink and G. Jackson, J. Chem. Phys. 2009, 130, 234911], on the one hand, we have qualitative agreement with the observed non-monotonic density dependence of the wavenumber. Initially increasing with density, the wavenumber reaches a maximum, before falling as the density moves toward the point of phase transition from cholesteric to smectic. However, further analysis for shorter rods, in the presence of novel boundary conditions, reveals some disagreement with the theory, at least in this case; the unwinding of the cholesteric helix in the cholesteric phase occurs simultaneously with subtle increases in smectic ordering. These pre-smectic fluctuations have not been accounted for so far in theories on cholesterics but turn out to play a key role in controlling the pitch of cholesteric phases of rod-shaped mesogens with a small to moderate aspect ratio.
Collapse
Affiliation(s)
- Paul E Brumby
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Akie Kowaguchi
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Takuma Nozawa
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Kenji Yasuoka
- Department of Mechanical Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Henricus H Wensink
- Laboratoire de Physique des Solides─UMR 8502, Université Paris-Saclay & CNRS, Orsay 91405, France
| |
Collapse
|
2
|
Sanchez-Martinez P, Diaz-Herrera E, Salgado-Blanco D, Hernandez SI, Mendoza CI. Isobars and pitch of cholesteric phases for a chiral Gay-Berne fluid by molecular dynamic simulations. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2154715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Enrique Diaz-Herrera
- Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México
| | - Daniel Salgado-Blanco
- Cátedras CONACyT – Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - S. I. Hernandez
- Unidad Multidisciplinaria de Docencia e Investigación-Juriquilla, Facultad de Ciencias, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, Mexico
| | - Carlos I. Mendoza
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
3
|
Skutnik RA, Eichler JC, Mazza MG, Schoen M. The temperature dependence of the helical pitch in a cholesteric liquid crystal. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1881638] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Robert A. Skutnik
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakulät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Berlin, Germany
| | - Jan-Christoph Eichler
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakulät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Berlin, Germany
| | - Marco G. Mazza
- Interdisciplinary Centre for Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough, Leicestershire, UK
- Max Planck Institute for Dynamics and Self-Organization, Göttingen, Germany
| | - Martin Schoen
- Stranski-Laboratorium für Physikalische und Theoretische Chemie, Fakulät für Mathematik und Naturwissenschaften, Technische Universität Berlin, Berlin, Germany
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
4
|
Wensink HH. Polymeric Nematics of Associating Rods: Phase Behavior, Chiral Propagation, and Elasticity. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Henricus H. Wensink
- Laboratoire de Physique des Solides—UMR 8502, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
5
|
Wu L, Sun H. Manipulation of cholesteric liquid crystal phase behavior and molecular assembly by molecular chirality. Phys Rev E 2019; 100:022703. [PMID: 31574769 DOI: 10.1103/physreve.100.022703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 06/10/2023]
Abstract
Molecular simulation is used to study the effect of molecular chirality on liquid crystalline phase transition and molecular assembly behavior. Based on a flexible chain (FCh) model with helical arrangement of side beads, the phase behavior of FCh models with various molecular chiralities are studied as functions of pressure (or density). By modifying the molecular chirality of FCh, we can manipulate the relative stability of the nematic and cholesteric phases continuously; and we found that increasing molecular chirality may destabilize cholesteric order due to the effective reduction of chiral interactions. A semismectic phase is identified in the high-density region, in which the two-dimensional fluid layers overlap due to shift alignment formed by FCh particles. The global phase diagram of the FCh model is constructed and the potential energy surface is calculated to elucidate the formation of cholesteric phase in terms of two-body interactions.
Collapse
Affiliation(s)
- Liang Wu
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huai Sun
- School of Chemistry and Chemical Engineering, Materials Genome Initiative Center, and Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
Affiliation(s)
- Michael P. Allen
- Department of Physics, University of Warwick, Coventry, UK
- H. H. Wills Physics Laboratory, Royal Fort, Bristol, UK
| |
Collapse
|
7
|
Abstract
Many nanoparticle-based chiral liquid crystals are composed of polydisperse rod-shaped particles with considerable spread in size or shape, affecting the mesoscale chiral properties in, as yet, unknown ways. Using an algebraic interpretation of Onsager-Straley theory for twisted nematics, we investigate the role of length polydispersity on the pitch of nanorod-based cholesterics with a continuous length polydispersity, and find that polydispersity enhances the twist elastic modulus, K 2 , of the cholesteric material without affecting the effective helical amplitude, K t . In addition, for the infinitely large average aspect ratios considered here, the dependence of the pitch on the overall rod concentration is completely unaffected by polydispersity. For a given concentration, the increase in twist elastic modulus (and reduction of the helical twist) may be up to 50% for strong size polydispersity, irrespective of the shape of the unimodal length distribution. We also demonstrate that the twist reduction is reinforced in bimodal distributions, obtained by doping a polydisperse cholesteric with very long rods. Finally, we identify a subtle, non-monotonic change of the pitch across the isotropic-cholesteric biphasic region.
Collapse
|
8
|
Tortora MMC, Doye JPK. Hierarchical bounding structures for efficient virial computations: Towards a realistic molecular description of cholesterics. J Chem Phys 2018; 147:224504. [PMID: 29246043 DOI: 10.1063/1.5002666] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
We detail the application of bounding volume hierarchies to accelerate second-virial evaluations for arbitrary complex particles interacting through hard and soft finite-range potentials. This procedure, based on the construction of neighbour lists through the combined use of recursive atom-decomposition techniques and binary overlap search schemes, is shown to scale sub-logarithmically with particle resolution in the case of molecular systems with high aspect ratios. Its implementation within an efficient numerical and theoretical framework based on classical density functional theory enables us to investigate the cholesteric self-assembly of a wide range of experimentally relevant particle models. We illustrate the method through the determination of the cholesteric behavior of hard, structurally resolved twisted cuboids, and report quantitative evidence of the long-predicted phase handedness inversion with increasing particle thread angles near the phenomenological threshold value of 45°. Our results further highlight the complex relationship between microscopic structure and helical twisting power in such model systems, which may be attributed to subtle geometric variations of their chiral excluded-volume manifold.
Collapse
Affiliation(s)
- Maxime M C Tortora
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
9
|
Tortora MMC, Doye JPK. Incorporating particle flexibility in a density functional description of nematics and cholesterics. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1464226] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Maxime M. C. Tortora
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, United Kingdom
| | - Jonathan P. K. Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford , Oxford, United Kingdom
| |
Collapse
|
10
|
Wu L, Malijevský A, Avendaño C, Müller EA, Jackson G. Demixing, surface nematization, and competing adsorption in binary mixtures of hard rods and hard spheres under confinement. J Chem Phys 2018; 148:164701. [DOI: 10.1063/1.5020002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Liang Wu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Alexandr Malijevský
- Department of Physical Chemistry, University of Chemical Technology Prague, 166 28 Praha 6, Czech Republic
- Department of Microscopic and Mesoscopic Modelling, ICPF of the Czech Academy of Sciences, 165 02 Prague 6, Czech Republic
| | - Carlos Avendaño
- School of Chemical Engineering and Analytical Science, The University of Manchester, Sackville Street, Manchester M13 9PL, United Kingdom
| | - Erich A. Müller
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
11
|
Wu L, Sun H. Cholesteric ordering predicted using a coarse-grained polymeric model with helical interactions. SOFT MATTER 2018; 14:344-353. [PMID: 29211101 DOI: 10.1039/c7sm02077e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The understanding of cholesteric liquid crystals at a molecular level is challenging. Limited insights are available to bridge between molecular structures and macroscopic chiral organization. In the present study, we introduce a novel coarse-grained (CG) molecular model, which is represented by flexible chain particles with helical interactions (FCh), to study the liquid crystalline phase behavior of cholesteric molecules such as double strand DNA and α-helix polypeptides using molecular dynamics (MD) simulations. The isotropic-cholesteric phase transitions of FCh molecules were simulated for varying chain flexibilities. A wall confinement was used to break the periodicity along the cholesteric helix director in order to predict the equilibrium cholesteric pitch. The left-handed cholesteric phase was shown for FCh molecules with right-handed chiral interactions, and a spatially inhomogeneous distribution of the nematic order parameter profile was observed in cholesteric phases. It was found that the chain flexibility plays an important role in determining the macroscopic cholesteric pitch and the structure of the cholesteric liquid crystal phase. The simulations provide insight into the relationship between microscopic molecular characteristics and the macroscopic phase behavior.
Collapse
Affiliation(s)
- Liang Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Scientific and Engineering Computing of Ministry of Education, Shanghai Jiao Tong University, 200240, Shanghai, China.
| | | |
Collapse
|
12
|
Tortora MMC, Doye JPK. Perturbative density functional methods for cholesteric liquid crystals. J Chem Phys 2017. [DOI: 10.1063/1.4982934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Maxime M. C. Tortora
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - Jonathan P. K. Doye
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| |
Collapse
|
13
|
Růžička Š, Wensink HH. Simulating the pitch sensitivity of twisted nematics of patchy rods. SOFT MATTER 2016; 12:5205-5213. [PMID: 27184814 DOI: 10.1039/c6sm00727a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stiff, elongated biomolecules such as filamentous viruses, DNA or cellulose nanocrystals are known to form liquid crystals often exhibiting a helical supramolecular organization. Little is known about the microscopic origin, size and handedness of the helical pitch in these, so-called cholesteric phases. Experimental observations in chiral lyotropics suggest that long-ranged chiral forces of electrostatic origin acting between the mesogens are responsible for such organization. Using large-scale computer simulation we study the sensitivity of the pitch imparted by soft microscopic helices and confirm that the helical sense is sensitive to a change of packing fraction, magnitude of the molecular pitch and amplitude of the chiral interactions. In particular, we find evidence that the cholesteric helix sense may change spontaneously upon variation of particle density, at fixed molecular chirality. These pitch inversions have been reported in recent theoretical studies but simulation evidence remains elusive. We rationalize these sudden changes in the supramolecular helical symmetry on the basis of detailed measurements of the mean-torque generated by the twisting of the helices. The simulation methodology employed does not require confining the twisted nematic in a slab geometry and allows for a simultaneous measurement of the pitch and the twist elastic constant. We find that the twist elastic constant increases almost linearly with density suggesting that twisted nematic shows no signs of anomalous stiffening due to pre-smectic fluctuations at higher packing fraction.
Collapse
Affiliation(s)
- Štěpán Růžička
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, UMR 8502 - 91405 Orsay Cedex, France.
| | | |
Collapse
|
14
|
Dussi S, Dijkstra M. Entropy-driven formation of chiral nematic phases by computer simulations. Nat Commun 2016; 7:11175. [PMID: 27067806 PMCID: PMC4832067 DOI: 10.1038/ncomms11175] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/29/2016] [Indexed: 12/24/2022] Open
Abstract
Predicting the macroscopic chiral behaviour of liquid crystals from the microscopic chirality of the particles is highly non-trivial, even when the chiral interactions are purely entropic in nature. Here we introduce a novel chiral hard-particle model, namely particles with a twisted polyhedral shape and obtain a stable fully entropy-driven cholesteric phase by computer simulations. By slightly modifying the triangular base of the particle, we are able to switch from a left-handed prolate (calamitic) to a right-handed oblate (discotic) cholesteric phase using the same right-handed twisted particle model. Furthermore, we show that not only prolate and oblate chiral nematic phases, but also other novel entropy-driven phases, namely chiral blue phases, chiral nematic phases featuring both twist and splay deformations, chiral biaxial nematic phases with one of the axes twisted, can be obtained by varying particle biaxiality and chirality. Our results allow to identify general guidelines for the stabilization of these phases.
Collapse
Affiliation(s)
- Simone Dussi
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
15
|
Wensink HH, Morales-Anda L. Chiral assembly of weakly curled hard rods: Effect of steric chirality and polarity. J Chem Phys 2015; 143:144907. [DOI: 10.1063/1.4932979] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- H. H. Wensink
- Laboratoire de Physique des Solides–UMR 8502, Université Paris-Sud & CNRS, 91405 Orsay, France
| | - L. Morales-Anda
- Laboratoire de Physique des Solides–UMR 8502, Université Paris-Sud & CNRS, 91405 Orsay, France
| |
Collapse
|
16
|
Dussi S, Belli S, van Roij R, Dijkstra M. Cholesterics of colloidal helices: Predicting the macroscopic pitch from the particle shape and thermodynamic state. J Chem Phys 2015; 142:074905. [DOI: 10.1063/1.4908162] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Simone Dussi
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Simone Belli
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - René van Roij
- Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - Marjolein Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| |
Collapse
|
17
|
Wensink HH, Trizac E. Generalized Onsager theory for strongly anisometric patchy colloids. J Chem Phys 2014; 140:024901. [PMID: 24437905 DOI: 10.1063/1.4851217] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The implications of soft "patchy" interactions on the orientational disorder-order transition of strongly elongated colloidal rods and flat disks is studied within a simple Onsager-van der Waals density functional theory. The theory provides a generic framework for studying the liquid crystal phase behaviour of highly anisometric cylindrical colloids which carry a distinct geometrical pattern of repulsive or attractive soft interactions localized on the particle surface. In this paper, we apply our theory to the case of charged rods and disks for which the local electrostatic interactions can be described by a screened-Coulomb potential. We consider infinitely thin rod like cylinders with a uniform line charge and infinitely thin discotic cylinders with several distinctly different surface charge patterns. Irrespective of the backbone shape the isotropic-nematic phase diagrams of charged colloids feature a generic destabilization of nematic order at low ionic strength, a dramatic narrowing of the biphasic density region, and a reentrant phenomenon upon reducing the electrostatic screening. The low screening regime is characterized by a complete suppression of nematic order in favor of positionally ordered liquid crystal phases.
Collapse
Affiliation(s)
- H H Wensink
- Laboratoire de Physique des Solides - UMR 8502, Université Paris-Sud and CNRS, 91405 Orsay Cedex, France
| | - E Trizac
- Laboratoire de Physique Théorique et Modèles Statistiques - UMR 8626, Université Paris-Sud and CNRS, 91405 Orsay Cedex, France
| |
Collapse
|
18
|
Belli S, Dussi S, Dijkstra M, van Roij R. Density functional theory for chiral nematic liquid crystals. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:020503. [PMID: 25215676 DOI: 10.1103/physreve.90.020503] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Indexed: 06/03/2023]
Abstract
Even though chiral nematic phases were the first liquid crystals experimentally observed more than a century ago, the origin of the thermodynamic stability of cholesteric states is still unclear. In this Rapid Communication we address the problem by means of a density functional theory for the equilibrium pitch of chiral particles. When applied to right-handed hard helices, our theory predicts an entropy-driven cholesteric phase, which can be either right or left handed, depending not only on the particle shape but also on the thermodynamic state. We explain the origin of the chiral ordering as an interplay between local nematic alignment and excluded-volume differences between left- and right-handed particle pairs.
Collapse
Affiliation(s)
- S Belli
- Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| | - S Dussi
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - M Dijkstra
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - R van Roij
- Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands
| |
Collapse
|
19
|
Wu L, Müller EA, Jackson G. Understanding and Describing the Liquid-Crystalline States of Polypeptide Solutions: A Coarse-Grained Model of PBLG in DMF. Macromolecules 2014. [DOI: 10.1021/ma401230x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Liang Wu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - Erich A. Müller
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom
| |
Collapse
|
20
|
Wu L, Jackson G, Müller EA. Liquid crystal phase behaviour of attractive disc-like particles. Int J Mol Sci 2013; 14:16414-42. [PMID: 23965962 PMCID: PMC3759919 DOI: 10.3390/ijms140816414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 11/17/2022] Open
Abstract
We employ a generalized van der Waals-Onsager perturbation theory to construct a free energy functional capable of describing the thermodynamic properties and orientational order of the isotropic and nematic phases of attractive disc particles. The model mesogen is a hard (purely repulsive) cylindrical disc particle decorated with an anisotropic square-well attractive potential placed at the centre of mass. Even for isotropic attractive interactions, the resulting overall inter-particle potential is anisotropic, due to the orientation-dependent excluded volume of the underlying hard core. An algebraic equation of state for attractive disc particles is developed by adopting the Onsager trial function to characterize the orientational order in the nematic phase. The theory is then used to represent the fluid-phase behaviour (vapour-liquid, isotropic-nematic, and nematic-nematic) of the oblate attractive particles for varying values of the molecular aspect ratio and parameters of the attractive potential. When compared to the phase diagram of their athermal analogues, it is seen that the addition of an attractive interaction facilitates the formation of orientationally-ordered phases. Most interestingly, for certain aspect ratios, a coexistence between two anisotropic nematic phases is exhibited by the attractive disc-like fluids.
Collapse
Affiliation(s)
- Liang Wu
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; E-Mails: (L.W.); (G.J.)
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; E-Mails: (L.W.); (G.J.)
| | - Erich A. Müller
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK; E-Mails: (L.W.); (G.J.)
| |
Collapse
|
21
|
Wensink HH, Jackson G. Cholesteric order in systems of helical Yukawa rods. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2011; 23:194107. [PMID: 21525561 DOI: 10.1088/0953-8984/23/19/194107] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We consider the interaction potential between two chiral rod-like colloids which consist of a thin cylindrical backbone decorated with a helical charge distribution on the cylinder surface. For sufficiently slender helical rods a simple scaling expression is derived which relates the chiral 'twisting' potential to the microscopic properties of the particles, such as the internal helical pitch, charge density and electrostatic screening parameter. To predict the behaviour of the macroscopic cholesteric pitch of the fluid bulk phase we invoke a simple second-virial theory generalized to treat anisotropic states with weakly twisted director fields. It is shown that, while particles with weakly coiled helices always form a cholesteric phase whose helical sense is commensurate with that of the internal helix, more strongly coiled rods lead to the formation of a cholesteric state of opposite sense. The correlation between the helical symmetry at the microscopic and macroscopic scale is found to be very sensitive to the pitch of the Yukawa helix. Mixing helical particles of sufficiently disparate length and internal pitch may give rise to a demixing of the uniform cholesteric phase into two fractions with a different macroscopic pitch. Our findings could be relevant to the interpretation of experimental observations in systems of cellulose and chitin microfibres, DNA and fd virus rods.
Collapse
Affiliation(s)
- H H Wensink
- Department of Chemical Engineering, Imperial College London, London, UK.
| | | |
Collapse
|
22
|
Varga S, Jackson G. A study of steric chirality: the chiral nematic phase of a system of chiral two-site HGO molecules. Mol Phys 2011. [DOI: 10.1080/00268976.2011.556577] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Wensink HH, Jackson G. Generalized van der Waals theory for the twist elastic modulus and helical pitch of cholesterics. J Chem Phys 2009; 130:234911. [DOI: 10.1063/1.3153348] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Lago S, Gámez F, Cortada M, Merkling PJ, Garzón B. Influence of the Displacement out of the Center of Mass and Nonaxiality of the Dipole on the Thermodynamics of Liquids Composed of Linear Dipole Molecules. J Phys Chem B 2008; 112:8069-75. [DOI: 10.1021/jp801680z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. Lago
- Dpt. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. de Utrera Km. 1, Seville 41013, Spain, and Dpt. Física Aplicada, Fisicoquímica y Óptica Facultad de Farmacia, Universidad San Pablo CEU, Urb. Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - F. Gámez
- Dpt. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. de Utrera Km. 1, Seville 41013, Spain, and Dpt. Física Aplicada, Fisicoquímica y Óptica Facultad de Farmacia, Universidad San Pablo CEU, Urb. Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - M. Cortada
- Dpt. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. de Utrera Km. 1, Seville 41013, Spain, and Dpt. Física Aplicada, Fisicoquímica y Óptica Facultad de Farmacia, Universidad San Pablo CEU, Urb. Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - P. J. Merkling
- Dpt. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. de Utrera Km. 1, Seville 41013, Spain, and Dpt. Física Aplicada, Fisicoquímica y Óptica Facultad de Farmacia, Universidad San Pablo CEU, Urb. Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| | - B. Garzón
- Dpt. Sistemas Físicos, Químicos y Naturales, Universidad Pablo de Olavide, Ctra. de Utrera Km. 1, Seville 41013, Spain, and Dpt. Física Aplicada, Fisicoquímica y Óptica Facultad de Farmacia, Universidad San Pablo CEU, Urb. Montepríncipe, Boadilla del Monte, 28668 Madrid, Spain
| |
Collapse
|
25
|
Franco-Melgar M, Haslam AJ, Jackson G. A generalisation of the Onsager trial-function approach: describing nematic liquid crystals with an algebraic equation of state. Mol Phys 2008. [DOI: 10.1080/00268970801926958] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|