1
|
Petrov K, Csóka J, Kállay M. Analytic Gradients for Density Fitting MP2 Using Natural Auxiliary Functions. J Phys Chem A 2024; 128:6566-6580. [PMID: 39074307 PMCID: PMC11317987 DOI: 10.1021/acs.jpca.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The natural auxiliary function (NAF) approach is an approximation to decrease the size of the auxiliary basis set required for quantum chemical calculations utilizing the density fitting technique. It has been proven efficient to speed up various correlation models, such as second-order Møller-Plesset (MP2) theory and coupled-cluster methods. Here, for the first time, we discuss the theory of analytic derivatives for correlation methods employing the NAF approximation on the example of MP2. A detailed algorithm for the gradient calculation with the NAF approximation is proposed in the framework of the method of Lagrange multipliers. To assess the effect of the NAF approximation on gradients and optimized geometric parameters, a series of benchmark calculations on small and medium-sized systems was performed. Our results demonstrate that, for MP2, sufficiently accurate gradients and geometries can be achieved with a moderate time reduction of 15-20% for both small and medium-sized molecules.
Collapse
Affiliation(s)
- Klára Petrov
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN−BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA−BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - József Csóka
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN−BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA−BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Mihály Kállay
- Department
of Physical Chemistry and Materials Science, Faculty of Chemical Technology
and Biotechnology, Budapest University of
Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- HUN-REN−BME
Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
- MTA−BME
Lendület Quantum Chemistry Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
2
|
Sorathia K, Frantzov D, Tew DP. Improved CPS and CBS Extrapolation of PNO-CCSD(T) Energies: The MOBH35 and ISOL24 Data Sets. J Chem Theory Comput 2024; 20:2740-2750. [PMID: 38513261 PMCID: PMC11008106 DOI: 10.1021/acs.jctc.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
Abstract
Computation of heats of reaction of large molecules is now feasible using the domain-based pair natural orbital (PNO)-coupled-cluster singles, doubles, and perturbative triples [CCSD(T)] theory. However, to obtain agreement within 1 kcal/mol of experiment, it is necessary to eliminate basis set incompleteness error, which comprises both the AO basis set error and the PNO truncation error. Our investigation into the convergence to the canonical limit of PNO-CCSD(T) energies with the PNO truncation threshold T shows that errors follow the model E ( T ) = E + A T 1 / 2 . Therefore, PNO truncation errors can be eliminated using a simple two-point CPS extrapolation to the canonical limit so that subsequent CBS extrapolation is not limited by the residual PNO truncation error. Using the ISOL24 and MOBH35 data sets, we find that PNO truncation errors are larger for molecules with significant static correlation and that it is necessary to use very tight thresholds of T = 10 - 8 to ensure that errors do not exceed 1 kcal/mol. We present a lower-cost extrapolation scheme that uses information from small basis sets to estimate the PNO truncation errors for larger basis sets. In this way, the canonical limit of CCSD(T) calculations on sizable molecules with large basis sets can be reliably estimated in a practical way. Using this approach, we report near complete basis set (CBS)-CCSD(T) reaction energies for the full ISOL24 and MOBH35 data sets.
Collapse
Affiliation(s)
- Kesha Sorathia
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Damyan Frantzov
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - David P. Tew
- University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
3
|
Kurian JS, Ye HZ, Mahajan A, Berkelbach TC, Sharma S. Toward Linear Scaling Auxiliary-Field Quantum Monte Carlo with Local Natural Orbitals. J Chem Theory Comput 2024; 20:134-142. [PMID: 38113195 DOI: 10.1021/acs.jctc.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
We develop a local correlation variant of auxiliary-field quantum Monte Carlo (AFQMC) based on local natural orbitals (LNO-AFQMC). In LNO-AFQMC, independent AFQMC calculations are performed for each localized occupied orbital using a truncated set of tailored orbitals. Because the size of this space does not grow with the system size for a target accuracy, the method has linear scaling. Applying LNO-AFQMC to molecular problems containing a few hundred to a thousand orbitals, we demonstrate convergence of total energies with significantly reduced costs. The savings are more significant for larger systems and larger basis sets. However, even for our smallest system studied, we find that LNO-AFQMC is cheaper than canonical AFQMC, in contrast with many other reduced-scaling methods. Perhaps most significantly, we show that energy differences converge much more quickly than total energies, making the method ideal for applications in chemistry and material science. Our work paves the way for linear scaling AFQMC calculations of strongly correlated systems, which would have a transformative effect on ab initio quantum chemistry.
Collapse
Affiliation(s)
- Jo S Kurian
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | - Hong-Zhou Ye
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Ankit Mahajan
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Timothy C Berkelbach
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
4
|
Werner HJ, Hansen A. Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. J Chem Theory Comput 2023; 19:7007-7030. [PMID: 37486154 DOI: 10.1021/acs.jctc.3c00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
An overview of the approximations in the explicitly correlated local coupled cluster methods PNO-LCCSD(T)-F12 in Molpro and DLPNO-CCSD(T)F12 in ORCA is given. Options to select the domains of projected atomic orbitals (PAOs), pair natural orbitals (PNOs), and triples natural orbitals (TNOs) in both programs are described and compared in detail. The two programs are applied to compute isomerization and conformational energies of the ISOL24 and ACONFL test sets, where the former is part of the GMTKN55 benchmark suite. Thorough studies of basis set effects are presented for selected systems. These revealed large intramolecular basis set superposition effects that make it practically impossible to reliably determine the complete basis set (CBS) limits without including explicitly correlated terms. The latter strongly reduce the basis set dependence and at the same time also errors caused by the local domain approximations. On the basis of these studies, the PNO-LCCSD(T)-F12 method is applied to determine new reference energies for the above-mentioned benchmark sets. We are confident that our results should agree within a few tenths of a kcal mol-1 with the (unknown) CCSD(T)/CBS values, which therefore allowed us to define computational settings for accurate explicitly correlated local coupled cluster methods with moderate computational effort. With these protocols, especially PNO-LCCSD(T)-F12b/AVTZ', reliable reference values for comprehensive benchmark sets can be generated efficiently. This can significantly advance the development and evaluation of the performance of approximate electronic structure methods, especially improved density functional approximations or machine learning approaches.
Collapse
Affiliation(s)
- Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Andreas Hansen
- Mulliken Center for Theoretical Chemistry, Universität Bonn, Beringstrasse 4, D-53115 Bonn, Germany
| |
Collapse
|
5
|
Helmich-Paris B, de Souza B, Neese F, Izsák R. An improved chain of spheres for exchange algorithm. J Chem Phys 2021; 155:104109. [PMID: 34525816 DOI: 10.1063/5.0058766] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In the present work, we describe a more accurate and efficient variant of the chain-of-spheres algorithm (COSX) for exchange matrix computations. Higher accuracy for the numerical integration is obtained with new grids that were developed using global optimization techniques. With our new default grids, the average absolute energy errors are much lower than 0.1 kcal/mol, which is desirable to achieve "chemical accuracy." Although the size of the new grids is increased by roughly a factor of 2.5, the excellent efficiency of the original COSX implementation is still further improved in most cases. The evaluation of the analytic electrostatic potential integrals was significantly accelerated by a new implementation of rolled-out versions of the Dupuis-Rys-King and Head-Gordon-Pople algorithms. Compared to our earlier implementation, a twofold speedup is obtained for the frequently used triple-ζ basis sets, while up to a 16-fold speedup is observed for quadruple-ζ basis sets. These large gains are a consequence of both the more efficient integral evaluation and the intermediate exchange matrix computation in a partially contracted basis when generally contracted shells occur. With our new RIJCOSX implementation, we facilitate accurate self-consistent field (SCF) binding energy calculations on a large supra-molecular complex composed of 320 atoms. The binding-energy errors with respect to the fully analytic results are well below 0.1 kcal/mol for the cc-pV(T/Q)Z basis sets and even smaller than for RIJ with fully analytic exchange. At the same time, our RIJCOSX SCF calculation even with the cc-pVQZ basis and the finest grid is 21 times faster than the fully analytic calculation.
Collapse
Affiliation(s)
- Benjamin Helmich-Paris
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Róbert Izsák
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
6
|
Stoychev GL, Auer AA, Gauss J, Neese F. DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. J Chem Phys 2021; 154:164110. [PMID: 33940835 DOI: 10.1063/5.0047125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a derivation and efficient implementation of the formally complete analytic second derivatives for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory (MP2) method, applicable to electric or magnetic field-response properties but not yet to harmonic frequencies. We also discuss the occurrence and avoidance of numerical instability issues related to singular linear equation systems and near linear dependences in the projected atomic orbital domains. A series of benchmark calculations on medium-sized systems is performed to assess the effect of the local approximation on calculated nuclear magnetic resonance shieldings and the static dipole polarizabilities. Relative deviations from the resolution of the identity-based MP2 (RI-MP2) reference for both properties are below 0.5% with the default truncation thresholds. For large systems, our implementation achieves quadratic effective scaling, is more efficient than RI-MP2 starting at 280 correlated electrons, and is never more than 5-20 times slower than the equivalent Hartree-Fock property calculation. The largest calculation performed here was on the vancomycin molecule with 176 atoms, 542 correlated electrons, and 4700 basis functions and took 3.3 days on 12 central processing unit cores.
Collapse
Affiliation(s)
- Georgi L Stoychev
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alexander A Auer
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Jürgen Gauss
- Department Chemie, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. J Chem Theory Comput 2021; 17:902-926. [PMID: 33405921 DOI: 10.1021/acs.jctc.0c01129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We present explicitly correlated open-shell pair natural orbital local coupled-cluster methods, PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. The methods are extensions of our previously reported PNO-R/UCCSD methods (J. Chem. Theory Comput., 2020, 16, 3135-3151, https://pubs.acs.org/doi/10.1021/acs.jctc.0c00192) with additions of explicit correlation and perturbative triples corrections. The explicit correlation treatment follows the spin-orbital CCSD-F12b theory using Ansatz 3*A, which is found to yield comparable or better basis set convergence than the more rigorous Ansatz 3C in computed ionization potentials and reaction energies using double- to quaduple-ζ basis sets. The perturbative triples correction is adapted from the spin-orbital (T) theory to use triples natural orbitals (TNOs). To address the coupling due to off-diagonal Fock matrix elements, the local triples amplitudes are iteratively solved using small domains of TNOs, and a semicanonical (T0) domain correction with larger domains is applied to reduce the domain errors. The performance of the methods is demonstrated through benchmark calculations on ionization potentials, radical stabilization energies, reaction energies of fragmentations and rearrangements in radical cations, and spin-state energy differences of iron complexes. For a few test sets where canonical calculations are feasible, PNO-RCCSD(T)-F12 results agree with the canonical ones to within 0.4 kcal mol-1, and this maximum error is reduced to below 0.2 kcal mol-1 when large local domains are used. For larger systems, results using different thresholds for the local approximations are compared to demonstrate that 1 kcal mol-1 level of accuracy can be achieved using our default settings. For a couple of difficult cases, it is demonstrated that the errors from individual approximations are only a fraction of 1 kcal mol-1, and the overall accuracy of the method does not rely on error compensations. In contrast to canonical calculations, the use of spin-orbitals does not lead to a significant increase of computational time and memory usage in the most expensive steps of PNO-R/UCCSD(T)-F12 calculations. The only exception is the iterative solution of the (T) amplitudes, which can be avoided without significant errors by using a perturbative treatment of the off-diagonal coupling, known as (T1) approximation. For most systems, even the semicanonical approximation (T0) leads only to small errors in relative energies. Our program is well parallelized and capable of computing accurate correlation energies for molecules with 100-200 atoms using augmented triple-ζ basis sets in less than a day of elapsed time on a small computer cluster.
Collapse
Affiliation(s)
- Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
8
|
Tew DP. Principal domains in F12 explicitly correlated theory. ADVANCES IN QUANTUM CHEMISTRY 2021. [DOI: 10.1016/bs.aiq.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Yönder Ö, Schmitz G, Hättig C, Schmid R, Debiagi P, Hasse C, Locaspi A, Faravelli T. Can Small Polyaromatics Describe Their Larger Counterparts for Local Reactions? A Computational Study on the H-Abstraction Reaction by an H-Atom from Polyaromatics. J Phys Chem A 2020; 124:9626-9637. [PMID: 33147026 DOI: 10.1021/acs.jpca.0c07133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen abstraction is one of the crucial initial key steps in the combustion of polycyclic aromatic hydrocarbons. For an accurate theoretical prediction of heterogeneous combustion processes, larger systems need to be treated as compared to pure gas phase reactions. We address here the question on how transferable activation and reaction energies computed for small molecular models are to larger polyaromatics. The approximate transferability of energy contributions is a key assumption for multiscale modeling approaches. To identify efficient levels of accuracy, we start with accurate coupled-cluster and density functional theory (DFT) calculations for different sizes of polyaromatics. More approximate methods as the reactive force-field ReaxFF and the extended semi-empirical tight binding (xTB) methods are then benchmarked against these data sets in terms of reaction energies and equilibrium geometries. Furthermore, we analyze the role of bond-breaking and relaxation energies, vibrational contributions, and post-Hartree-Fock correlation corrections on the reaction, and for the activation energies, we analyze the validity of the Bell-Evans-Polanyi and Hammond principles. First, we find good transferability for this process and that the predictivity of small models at high theoretical levels is way superior than any approximate method can deliver. Second, ReaxFF can serve as a qualitative exploration method, whereas GFN2-xTB in combination with GFN1-xTB appears as a favorable tool to bridge between DFT and ReaxFF so that we propose a multimethod scheme with employing ReaxFF, GFN1/GFN2-xTB, DFT, and coupled cluster to cope effectively with such a complex reactive system.
Collapse
Affiliation(s)
- Özlem Yönder
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Gunnar Schmitz
- Computational Materials Chemistry Group, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Rochus Schmid
- Computational Materials Chemistry Group, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Paulo Debiagi
- Simulation of Reactive Thermo-Fluid Systems (STFS), TU Darmstadt, Otto-Berndt-Straße 2, 64827 Darmstadt, Germany
| | - Christian Hasse
- Simulation of Reactive Thermo-Fluid Systems (STFS), TU Darmstadt, Otto-Berndt-Straße 2, 64827 Darmstadt, Germany
| | - Andrea Locaspi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| | - Tiziano Faravelli
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy
| |
Collapse
|
10
|
Sorathia K, Tew DP. Basis set extrapolation in pair natural orbital theories. J Chem Phys 2020; 153:174112. [PMID: 33167642 DOI: 10.1063/5.0022077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the results of a benchmark study of the effect of Pair Natural Orbital (PNO) truncation errors on the performance of basis set extrapolation. We find that reliable conclusions from the application of Helgaker's extrapolation method are only obtained when using tight PNO thresholds of at least 10-7. The use of looser thresholds introduces a significant risk of observing a false basis set convergence and underestimating the residual basis set errors. We propose an alternative extrapolation approach based on the PNO truncation level that only requires a single basis set and show that it is a viable alternative to hierarchical basis set extrapolation methods.
Collapse
Affiliation(s)
- Kesha Sorathia
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, GermanyUniversity of Oxford, South Parks Road, Oxford OX1 3QZ, United Kingdom
| | - David P Tew
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
11
|
Frank MS, Schmitz G, Hättig C. Implementation of the iterative triples model CC3 for excitation energies using pair natural orbitals and Laplace transformation techniques. J Chem Phys 2020; 153:034109. [PMID: 32716174 DOI: 10.1063/5.0012597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a pair natural orbital (PNO)-based implementation of CC3 excitation energies, which extends our previously published state-specific PNO ansatz for the solution of the excited state eigenvalue problem to methods including connected triple excitations. A thorough analysis of the equations for the excited state triples amplitudes is presented from which we derive a suitable state-specific triple natural orbital basis for the excited state triples amplitudes, which performs equally well for local and non-local excitations. The accuracy of the implementation is evaluated using a large and diverse test set. We find that for states with small contributions from double excitations, a T0 approximation to PNO-CC3 yields accurate results with a mean absolute error (MAE) for TPNO = 10-7 in the range of 0.02 eV. However, for states with larger double excitation contributions, the T0 approximation is found to yield significantly less accurate results, while the Laplace-transformed variant of PNO-CC3 shows a uniform accuracy for singly and doubly excited states (MAE and maximum error of 0.01 eV and 0.07 eV for TPNO = 10-7, respectively). Finally, we apply PNO-CC3 to the calculation of the first excited state of berenil at a S1 minimum geometry, which is shown to be close to a conical intersection. This calculation in the aug-cc-pVTZ basis set (more than 1300 basis functions) is the largest calculation ever performed with CC3 on excitation energies.
Collapse
Affiliation(s)
- Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Gunnar Schmitz
- Deparment of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| |
Collapse
|
12
|
Förster A, Visscher L. Double hybrid DFT calculations with Slater type orbitals. J Comput Chem 2020; 41:1660-1684. [PMID: 32297682 PMCID: PMC7317772 DOI: 10.1002/jcc.26209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
Abstract
On a comprehensive database with 1,644 datapoints, covering several aspects of main-group as well as of transition metal chemistry, we assess the performance of 60 density functional approximations (DFA), among them 36 double hybrids (DH). All calculations are performed using a Slater type orbital (STO) basis set of triple-ζ (TZ) quality and the highly efficient pair atomic resolution of the identity approach for the exchange- and Coulomb-term of the KS matrix (PARI-K and PARI-J, respectively) and for the evaluation of the MP2 energy correction (PARI-MP2). Employing the quadratic scaling SOS-AO-PARI-MP2 algorithm, DHs based on the spin-opposite-scaled (SOS) MP2 approximation are benchmarked against a database of large molecules. We evaluate the accuracy of STO/PARI calculations for B3LYP as well as for the DH B2GP-PLYP and show that the combined basis set and PARI-error is comparable to the one obtained using the well-known def2-TZVPP Gaussian-type basis set in conjunction with global density fitting. While quadruple-ζ (QZ) calculations are currently not feasible for PARI-MP2 due to numerical issues, we show that, on the TZ level, Jacob's ladder for classifying DFAs is reproduced. However, while the best DHs are more accurate than the best hybrids, the improvements are less pronounced than the ones commonly found on the QZ level. For conformers of organic molecules and noncovalent interactions where very high accuracy is required for qualitatively correct results, DHs provide only small improvements over hybrids, while they still excel in thermochemistry, kinetics, transition metal chemistry and the description of strained organic systems.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical ChemistryVrije UniversiteitAmsterdamThe Netherlands
| | - Lucas Visscher
- Theoretical ChemistryVrije UniversiteitAmsterdamThe Netherlands
| |
Collapse
|
13
|
Zhang IY, Xu X. On the top rung of Jacob's ladder of density functional theory: Toward resolving the dilemma of
SIE
and
NCE. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry Fudan University Shanghai China
| | - Xin Xu
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Department of Chemistry Fudan University Shanghai China
| |
Collapse
|
14
|
Lang J, Antalík A, Veis L, Brandejs J, Brabec J, Legeza Ö, Pittner J. Near-Linear Scaling in DMRG-Based Tailored Coupled Clusters: An Implementation of DLPNO-TCCSD and DLPNO-TCCSD(T). J Chem Theory Comput 2020; 16:3028-3040. [PMID: 32275424 DOI: 10.1021/acs.jctc.0c00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We present a new implementation of density matrix renormalization group based tailored coupled clusters method (TCCSD), which employs the domain-based local pair natural orbital approach (DLPNO). Compared to the previous local pair natural orbital (LPNO) version of the method, the new implementation is more accurate, offers more favorable scaling, and provides more consistent behavior across the variety of systems. On top of the singles and doubles, we include the perturbative triples correction (T), which is able to retrieve even more dynamic correlation. The methods were tested on three systems: tetramethyleneethane, oxo-Mn(Salen), and iron(II)-porphyrin model. The first two were revisited to assess the performance with respect to LPNO-TCCSD. For oxo-Mn(Salen), we retrieved between 99.8 and 99.9% of the total canonical correlation energy which is an improvement of 0.2% over the LPNO version in less than 63% of the total LPNO runtime. Similar results were obtained for iron(II)-porphyrin. When the perturbative triples correction was employed, irrespective of the active space size or system, the obtained energy differences between two spin states were within the chemical accuracy of 1 kcal/mol using the default DLPNO settings.
Collapse
Affiliation(s)
- Jakub Lang
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Andrej Antalík
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jan Brandejs
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic
| | - Jiří Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
15
|
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 7. Local Open-Shell Coupled-Cluster Methods Using Pair Natural Orbitals: PNO-RCCSD and PNO-UCCSD. J Chem Theory Comput 2020; 16:3135-3151. [PMID: 32275428 DOI: 10.1021/acs.jctc.0c00192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present well-parallelized local implementations of high-spin open-shell coupled cluster methods with single and double excitations (CCSD) using pair natural orbitals (PNOs). The methods are based on the spin-orbital coupled cluster theory using restricted open-shell Hartree-Fock (ROHF) reference functions. Two variants, namely, PNO-UCCSD and PNO-RCCSD are implemented and compared. In PNO-UCCSD, the coupled cluster amplitudes are spin-unrestricted, while in PNO-RCCSD the linear terms are spin-adapted by a spin-projection approach as described in J. Chem. Phys. 1993, 99, 5219-5227. Near linear scaling of the computational cost with the number of correlated electrons is achieved by applying domain and pair approximations. The PNOs are spin-independent and obtained using a semicanonical spin-restricted MP2 approximation with large domains of projected atomic orbitals (PAOs). The pair approximations of our previously described closed-shell PNO-LCCSD method are carefully revised so that they are compatible to the UCCSD theory, and PNO-UCCSD or PNO-RCCSD calculations for closed-shell molecules yield exactly the same results as corresponding spin-free closed-shell PNO-LCCSD calculations. The convergence of the results with respect to the thresholds and options that control the domain and pair approximations is demonstrated. It is found that large domains are required for the single excitations in open-shell calculations in order to obtain converged results. In general, the errors of relative energies caused by the local approximations can be reduced to below 1 kcal mol-1, even for difficult cases. Presently, PNO-RCCSD and PNO-UCCSD calculations for molecules with 100-200 atoms and augmented triple-ζ basis sets can be carried out in a few hours of elapsed time using ∼100 CPU cores. In addition, the program is also capable of performing distinguishable cluster (PNO-RDCSD and PNO-UDCSC) calculations. The present work is a critical step in developing fully local open-shell PNO-RCCSD(T)-F12 methods.
Collapse
Affiliation(s)
- Qianli Ma
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
16
|
Saitow M, Yanai T. A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework. J Chem Phys 2020; 152:114111. [PMID: 32199413 DOI: 10.1063/1.5142622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The Complete-Active Space Second-order Perturbation Theory (CASPT2) has been one of the most widely-used methods for reliably calculating electronic structures of multireference systems. Because of its lowest level treatment of dynamic correlation, it has a high computational feasibility; however, its accuracy in some cases falls short of needs. Here, as a simple yet higher-order alternative, we introduce a hybrid theory of the CASPT2 and a multireference variant of the Coupled-Electron Pair Approximation (CEPA), which is a class of high level correlation theory. A central feature of our theory (CEPT2) is to use the two underlying theories for describing different divisions of correlation components based on the full internal contraction framework. The external components, which usually give a major contribution to the dynamic correlation, are intensively described using the CEPA Ansatz, while the rests are treated at the CASPT2 level. Furthermore, to drastically reduce the computational demands, we have incorporated the pair-natural orbital (PNO) method into our multireference implementations. This development, thus, requires highly complex derivations and coding, while it has been largely facilitated with an automatic expression and code generation technique. To highlight the accuracy of the CEPT2 approach and to assess the errors caused by the PNO truncation, benchmark calculations are shown on small- to medium-size molecules, illustrating the high accuracy of the present CEPT2 model. By tightening the truncation thresholds, the PNO-CEPT2 energy converges toward the canonical counterpart and is more accurate than that of PNO-CASPT2 as long as the same truncation thresholds are used.
Collapse
Affiliation(s)
- Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| | - Takeshi Yanai
- Department of Chemistry, Graduate School of Science, Nagoya University, Furocho, Chikusa Ward, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
17
|
Förster A, Franchini M, van Lenthe E, Visscher L. A Quadratic Pair Atomic Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals. J Chem Theory Comput 2020; 16:875-891. [PMID: 31930915 PMCID: PMC7027358 DOI: 10.1021/acs.jctc.9b00854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 01/04/2023]
Abstract
We report a production level implementation of pair atomic resolution of the identity (PARI) based second-order Møller-Plesset perturbation theory (MP2) in the Slater type orbital (STO) based Amsterdam Density Functional (ADF) code. As demonstrated by systematic benchmarks, dimerization and isomerization energies obtained with our code using STO basis sets of triple-ζ-quality show mean absolute deviations from Gaussian type orbital, canonical, basis set limit extrapolated, global density fitting (DF)-MP2 results of less than 1 kcal/mol. Furthermore, we introduce a quadratic scaling atomic orbital based spin-opposite-scaled (SOS)-MP2 approach with a very small prefactor. Due to a worst-case scaling of [Formula: see text], our implementation is very fast already for small systems and shows an exceptionally early crossover to canonical SOS-PARI-MP2. We report computational wall time results for linear as well as for realistic three-dimensional molecules and show that triple-ζ quality calculations on molecules of several hundreds of atoms are only a matter of a few hours on a single compute node, the bottleneck of the computations being the SCF rather than the post-SCF energy correction.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije
Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The
Netherlands
| | - Mirko Franchini
- Theoretical Chemistry, Vrije
Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The
Netherlands
- Scientific Computing & Modelling
NV, De Boelelaan 1083, NL-1081 HV Amsterdam, The
Netherlands
| | - Erik van Lenthe
- Scientific Computing & Modelling
NV, De Boelelaan 1083, NL-1081 HV Amsterdam, The
Netherlands
| | - Lucas Visscher
- Theoretical Chemistry, Vrije
Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The
Netherlands
| |
Collapse
|
18
|
Zhou R, Liang Q, Yang J. Complete OSV-MP2 Analytical Gradient Theory for Molecular Structure and Dynamics Simulations. J Chem Theory Comput 2019; 16:196-210. [DOI: 10.1021/acs.jctc.9b00806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ruiyi Zhou
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Qiujiang Liang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR, P. R. China
| |
Collapse
|
19
|
Abstract
The computational efficiency of local correlation methods is strongly dependent on the size of the domain of functions used to expand local correlating orbitals such as orbital specific or pair natural orbitals. Here, we define a principal domain of order m as the subset of m one-particle functions that provides the best support for a given n-electron wave function by maximizing the partial trace of the one-body reduced density matrix. Principal domains maximize the overlap between the wave function and its approximant for two-electron systems and are the domain selection equivalent of Löwdin's natural orbitals. We present an efficient linear scaling greedy algorithm for obtaining principal domains of projected atomic orbitals and demonstrate its utility in the context of the pair natural orbital local correlation theory. We numerically determine thresholds such that the projected atomic orbital domain error is an order of magnitude smaller than the pair natural orbital truncation error.
Collapse
Affiliation(s)
- David P Tew
- Max Planck Institute for Solid State Research , Heisenbergstr. 1 , 70569 Stuttgart , Germany
| |
Collapse
|
20
|
Kats D, Werner HJ. Multi-state local complete active space second-order perturbation theory using pair natural orbitals (PNO-MS-CASPT2). J Chem Phys 2019; 150:214107. [DOI: 10.1063/1.5097644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Daniel Kats
- Max-Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institute for Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
21
|
Pinski P, Neese F. Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2). J Chem Phys 2019; 150:164102. [DOI: 10.1063/1.5086544] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Peter Pinski
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
22
|
Lang J, Brabec J, Saitow M, Pittner J, Neese F, Demel O. Perturbative triples correction to domain-based local pair natural orbital variants of Mukherjee's state specific coupled cluster method. Phys Chem Chem Phys 2019; 21:5022-5038. [PMID: 30762044 DOI: 10.1039/c8cp03577f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article we report an implementation of the perturbative triples correction to Mukherjee's state-specific multireference coupled cluster method based on the domain-based pair natural orbital approach (DLPNO-MkCC). We tested the performance of DLPNO-MkCCSD(T) in calculations involving tetramethyleneethane and isomers of naphthynes. These tests show that more than 97% of triples energy was recovered with respect to the canonical MkCCSD(T) method, which together with the DLPNO-MkCCSD part accounts for about 99.70-99.85% of the total correlation energy. The applicability of the method was demonstrated on calculations of singlet-triplet gaps for several large systems: triangulene, dynemicin A, and a beryllium complex.
Collapse
Affiliation(s)
- Jakub Lang
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic.
| | | | | | | | | | | |
Collapse
|
23
|
Krause C, Werner HJ. Scalable Electron Correlation Methods. 6. Local Spin-Restricted Open-Shell Second-Order Møller-Plesset Perturbation Theory Using Pair Natural Orbitals: PNO-RMP2. J Chem Theory Comput 2019; 15:987-1005. [PMID: 30571916 DOI: 10.1021/acs.jctc.8b01012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a (near) linear scaling implementation of high-spin open-shell Møller-Plesset perturbation theory using pair natural orbitals (PNO-RMP2). The theory is based on a new variant of open-shell MP2 which is fully spin-adapted and uses a single set of spin-free amplitudes, as in closed-shell MP2. This method, denoted SROMP2, is invariant to unitary orbital transformations within the closed, open, and virtual orbital subspaces. Accordingly, only a single set of PNOs per spatial orbital pair is needed, and the efficiency is similar to closed-shell calculations. The PNOs are obtained using a semicanonical approximation with large domains of projected atomic orbitals (PAOs). Linear scaling is achieved provided that the open-shell orbitals are local, and distant pairs are treated by multipole approximations. The method is efficiently parallelized. The convergence of ionization and reaction energies as a function of the PAO and PNO domain sizes is demonstrated and found to be very similar as for closed-shell calculations. The suitability of the PNOs for explicitly correlated PNO-RCCSD-F12 calculations is also tested. So far, this method is only simulated using a conventional program with appropriate projections to the PAO and PNO subspaces. It is demonstrated for radical stabilization energies as well as ionization potentials that the errors caused by the local domain approximations with our default thresholds are negligible.
Collapse
Affiliation(s)
- Christine Krause
- Institut für Theoretische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| | - Hans-Joachim Werner
- Institut für Theoretische Chemie , Universität Stuttgart , Pfaffenwaldring 55 , D-70569 Stuttgart , Germany
| |
Collapse
|
24
|
Saitow M, Dutta AK, Neese F. Accurate Ionization Potentials, Electron Affinities and Electronegativities of Single-Walled Carbon Nanotubes by State-of-the-Art Local Coupled-Cluster Theory. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Masaaki Saitow
- Department of Chemistry, Graduate School of Science, Nagoya University, 1-5 Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | | | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, 1 Kaiser-Wilhelm Platz, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
25
|
Kozłowska J, Schwilk M, Roztoczyńska A, Bartkowiak W. Assessment of DFT for endohedral complexes' dipole moment: PNO-LCCSD-F12 as a reference method. Phys Chem Chem Phys 2018; 20:29374-29388. [PMID: 30451255 DOI: 10.1039/c8cp05928d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a systematic evaluation of the performance of a wide range of exchange-correlation functionals and related dispersion correction schemes for the computation of dipole moments of endohedral complexes, formed through the encapsulation of an AB molecule (AB = LiF, HCl) inside carbon nanotubes (CNTs) of different diameter. The consistency and accuracy of (i) generalized gradient approximation, (ii) meta GGA, (iii) global hybrid, and (iv) range-separated hybrid density functionals are assessed. In total, 37 density functionals are tested. The results obtained using the highly accurate pair natural orbitals based explicitly correlated local coupled cluster singles doubles (PNO-LCCSD-F12) method of Werner and co-workers [Schwilk et al., J. Chem. Theory Comput., 2017, 13, 3650; Ma et al., J. Chem. Theory Comput., 2017, 13, 4871] with the aug-cc-pVTZ basis set serve as a reference. The static electric dipole moment is computed via the finite field response or, when possible, as the expectation value of the dipole operator. Among others, it is shown that functionals belonging to the class of range-separated hybrids, provide results closest to the coupled cluster reference data. In particular, the ωB97X as well as the M11 functional may be considered as a promising choice for computing electric properties of noncovalent endohedral complexes. On the other hand, the worst performance was found for the functionals which do not include the Hartree-Fock exchange. The analysis of both the coupled cluster and the DFT results indicates a strong coupling of dispersion and polarization that may also explain why lower level DFT methods, as well as Hartree-Fock and MP2, cannot yield dipole moments beyond a qualitative agreement with the higher order reference data. Interestingly, the much smaller and less systematically constructed basis sets of Pople of moderate size provide results of accuracy at least comparable with the extended Dunning's aug-cc-pVTZ basis set.
Collapse
Affiliation(s)
- Justyna Kozłowska
- Department of Physical and Quantum Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, PL-50370 Wrocław, Poland.
| | | | | | | |
Collapse
|
26
|
Peng C, Clement MC, Valeev EF. State-Averaged Pair Natural Orbitals for Excited States: A Route toward Efficient Equation of Motion Coupled-Cluster. J Chem Theory Comput 2018; 14:5597-5607. [DOI: 10.1021/acs.jctc.8b00171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chong Peng
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marjory C. Clement
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
27
|
Saitow M, Neese F. Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory. J Chem Phys 2018; 149:034104. [PMID: 30037259 DOI: 10.1063/1.5027114] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exploiting locality in the electron correlation reduces the computational cost for solving the Coupled-Cluster (CC) equations. This is important for making CC theory applicable to routine computational chemistry applications where it promises to deliver results of "gold-standard" quality. Recently, we have proposed a series of CC formulations in the domain-based local pair-natural orbital framework [DLPNO-coupled-cluster with singles and doubles (CCSD) and DLPNO-coupled-cluster singles and doubles with perturbative triples] which are designed to reproduce approximately 99.9% of the canonical correlation energy. In our previous work, the DLPNO-CCSD method has been extended to the high-spin open-shell reference and shown to possess comparable accuracy to the closed-shell counterpart [M. Saitow et al., J. Chem. Phys. 146, 164105 (2017)]. The so-called Λ-equations have been formulated in the DLPNO framework for the closed-shell species as an exact derivative of the DLPNO-CCSD Lagrangian with respect to the PNO-based cluster amplitudes [D. Datta et al., J. Chem. Phys. 145, 114101 (2016)]. In this paper, we extend the DLPNO-based Lagrangian scheme to the high-spin open-shell reference cases, thus enabling the accurate computation of the electron- and spin-densities for large open-shell species. We apply this newly developed approach to various first-order electronic and magnetic properties such as isotropic and anisotropic components in the hyperfine coupling interactions and the electric field gradient. We demonstrate that the DLPNO-CCSD results converge toward the respective canonical CC density and also that the DLPNO-CCSD-based properties are more accurate than the conventional density functional theory (DFT) results in real-life applications. The additional computational cost is not more than one energy evaluation in the DLPNO-CCSD framework.
Collapse
Affiliation(s)
- Masaaki Saitow
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Ma Q, Werner H. Explicitly correlated local coupled‐cluster methods using pair natural orbitals. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1371] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Qianli Ma
- Institute for Theoretical ChemistryUniversity of StuttgartStuttgartGermany
| | | |
Collapse
|
29
|
Pinski P, Neese F. Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). J Chem Phys 2018; 148:031101. [PMID: 29352787 DOI: 10.1063/1.5011204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Electron correlation methods based on pair natural orbitals (PNOs) have gained an increasing degree of interest in recent years, as they permit energy calculations to be performed on systems containing up to many hundred atoms, while maintaining chemical accuracy for reaction energies. We present an approach for taking exact analytical first derivatives of the energy contributions in the simplest method of the family of Domain-based Local Pair Natural Orbital (DLPNO) methods, closed-shell DLPNO-MP2. The Lagrangian function contains constraints to account for the relaxation of PNOs. RI-MP2 reference geometries are reproduced accurately, as exemplified for four systems with a substantial degree of nonbonding interactions. By the example of electric field gradients, we demonstrate that omitting PNO-specific constraints can lead to dramatic errors for orbital-relaxed properties.
Collapse
Affiliation(s)
- Peter Pinski
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
30
|
Abstract
The requirement that the linear density fitting error in the integral exactly vanishes introduces unphysical long range contributions to the approximate density when the auxiliary basis is incomplete. A quasi-robust density fitting formulation is presented where spatial locality is recovered at the expense of permitting a linear error that is made small by the fitting procedure, which involves optimising the Coulomb potential of the approximate charge density. The method is shown to be stable and almost as accurate as standard robust density fitting without local approximations in practical calculations using standard density fitting basis sets.
Collapse
Affiliation(s)
- David P Tew
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom and Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| |
Collapse
|
31
|
Frank MS, Hättig C. A pair natural orbital based implementation of CCSD excitation energies within the framework of linear response theory. J Chem Phys 2018; 148:134102. [PMID: 29626892 DOI: 10.1063/1.5018514] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a pair natural orbital (PNO)-based implementation of coupled cluster singles and doubles (CCSD) excitation energies that builds upon the previously proposed state-specific PNO approach to the excited state eigenvalue problem. We construct the excited state PNOs for each state separately in a truncated orbital specific virtual basis and use a local density-fitting approximation to achieve an at most quadratic scaling of the computational costs for the PNO construction. The earlier reported excited state PNO construction is generalized such that a smooth convergence of the results for charge transfer states is ensured for general coupled cluster methods. We investigate the accuracy of our implementation by applying it to a large and diverse test set comprising 153 singlet excitations in organic molecules. Already moderate PNO thresholds yield mean absolute errors below 0.01 eV. The performance of the implementation is investigated through the calculations on alkene chains and reveals an at most cubic cost-scaling for the CCSD iterations with the system size.
Collapse
Affiliation(s)
- Marius S Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| |
Collapse
|
32
|
Schmitz G, Christiansen O. Assessment of the overlap metric in the context of RI-MP2 and atomic batched tensor decomposed MP2. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Brabec J, Lang J, Saitow M, Pittner J, Neese F, Demel O. Domain-Based Local Pair Natural Orbital Version of Mukherjee’s State-Specific Coupled Cluster Method. J Chem Theory Comput 2018; 14:1370-1382. [DOI: 10.1021/acs.jctc.7b01184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jiri Brabec
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jakub Lang
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Masaaki Saitow
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, 45470 Mülheim an der Ruhr, Germany
| | - Ondřej Demel
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
34
|
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 5. Parallel Perturbative Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals. J Chem Theory Comput 2017; 14:198-215. [DOI: 10.1021/acs.jctc.7b01141] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qianli Ma
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
35
|
Fiedler B, Schmitz G, Hättig C, Friedrich J. Combining Accuracy and Efficiency: An Incremental Focal-Point Method Based on Pair Natural Orbitals. J Chem Theory Comput 2017; 13:6023-6042. [PMID: 29045786 DOI: 10.1021/acs.jctc.7b00654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this work, we present a new pair natural orbitals (PNO)-based incremental scheme to calculate CCSD(T) and CCSD(T0) reaction, interaction, and binding energies. We perform an extensive analysis, which shows small incremental errors similar to previous non-PNO calculations. Furthermore, slight PNO errors are obtained by using TPNO = TTNO with appropriate values of 10-7 to 10-8 for reactions and 10-8 for interaction or binding energies. The combination with the efficient MP2 focal-point approach yields chemical accuracy relative to the complete basis-set (CBS) limit. In this method, small basis sets (cc-pVDZ, def2-TZVP) for the CCSD(T) part are sufficient in case of reactions or interactions, while some larger ones (e.g., (aug)-cc-pVTZ) are necessary for molecular clusters. For these larger basis sets, we show the very high efficiency of our scheme. We obtain not only tremendous decreases of the wall times (i.e., factors >102) due to the parallelization of the increment calculations as well as of the total times due to the application of PNOs (i.e., compared to the normal incremental scheme) but also smaller total times with respect to the standard PNO method. That way, our new method features a perfect applicability by combining an excellent accuracy with a very high efficiency as well as the accessibility to larger systems due to the separation of the full computation into several small increments.
Collapse
Affiliation(s)
- Benjamin Fiedler
- Institut für Chemie, Technische Universität Chemnitz , 09111 Chemnitz, Germany
| | - Gunnar Schmitz
- Institut for Kemi, Aarhus Universitet , 8000 Aarhus C, Denmark
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum , 44801 Bochum, Germany
| | - Joachim Friedrich
- Institut für Chemie, Technische Universität Chemnitz , 09111 Chemnitz, Germany
| |
Collapse
|
36
|
Ma Q, Schwilk M, Köppl C, Werner HJ. Scalable Electron Correlation Methods. 4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD-F12). J Chem Theory Comput 2017; 13:4871-4896. [DOI: 10.1021/acs.jctc.7b00799] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qianli Ma
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Max Schwilk
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Christoph Köppl
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
37
|
Schwilk M, Ma Q, Köppl C, Werner HJ. Scalable Electron Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD). J Chem Theory Comput 2017; 13:3650-3675. [DOI: 10.1021/acs.jctc.7b00554] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Max Schwilk
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Qianli Ma
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Christoph Köppl
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institut für Theoretische
Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
38
|
Höfener S, Klopper W. Natural transition orbitals for the calculation of correlation and excitation energies. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
39
|
Nagy PR, Kállay M. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. J Chem Phys 2017; 146:214106. [PMID: 28576082 PMCID: PMC5453808 DOI: 10.1063/1.4984322] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/05/2017] [Indexed: 01/30/2023] Open
Abstract
An improved algorithm is presented for the evaluation of the (T) correction as a part of our local natural orbital (LNO) coupled-cluster singles and doubles with perturbative triples [LNO-CCSD(T)] scheme [Z. Rolik et al., J. Chem. Phys. 139, 094105 (2013)]. The new algorithm is an order of magnitude faster than our previous one and removes the bottleneck related to the calculation of the (T) contribution. First, a numerical Laplace transformed expression for the (T) fragment energy is introduced, which requires on average 3 to 4 times fewer floating point operations with negligible compromise in accuracy eliminating the redundancy among the evaluated triples amplitudes. Second, an additional speedup factor of 3 is achieved by the optimization of our canonical (T) algorithm, which is also executed in the local case. These developments can also be integrated into canonical as well as alternative fragmentation-based local CCSD(T) approaches with minor modifications. As it is demonstrated by our benchmark calculations, the evaluation of the new Laplace transformed (T) correction can always be performed if the preceding CCSD iterations are feasible, and the new scheme enables the computation of LNO-CCSD(T) correlation energies with at least triple-zeta quality basis sets for realistic three-dimensional molecules with more than 600 atoms and 12 000 basis functions in a matter of days on a single processor.
Collapse
Affiliation(s)
- Péter R Nagy
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, P.O. Box 91, H-1521 Budapest, Hungary
| |
Collapse
|
40
|
Kjærgaard T, Baudin P, Bykov D, Kristensen K, Jørgensen P. The divide–expand–consolidate coupled cluster scheme. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Pablo Baudin
- Department of ChemistryAarhus UniversityAarhusDenmark
| | - Dmytro Bykov
- Department of ChemistryAarhus UniversityAarhusDenmark
| | | | | |
Collapse
|
41
|
Schmitz G, Hättig C. Accuracy of Explicitly Correlated Local PNO-CCSD(T). J Chem Theory Comput 2017; 13:2623-2633. [DOI: 10.1021/acs.jctc.7b00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gunnar Schmitz
- Department
of Chemistry, Aarhus Universitet, Aarhus 8000, Denmark
| | - Christof Hättig
- Arbeitsgruppe
Quantenchemie, Ruhr-Universität, Bochum 44780, Germany
| |
Collapse
|
42
|
Kjærgaard T. The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J Chem Phys 2017; 146:044103. [PMID: 28147513 DOI: 10.1063/1.4973710] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-RI-MP2) theory method introduced in Baudin et al. [J. Chem. Phys. 144, 054102 (2016)] is significantly improved by introducing the Laplace transform of the orbital energy denominator in order to construct the double amplitudes directly in the local basis. Furthermore, this paper introduces the auxiliary reduction procedure, which reduces the set of the auxiliary functions employed in the individual fragments. The resulting Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation method is applied to the insulin molecule where we obtain a factor 9.5 speedup compared to the DEC-RI-MP2 method.
Collapse
Affiliation(s)
- Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
43
|
Schmitz G, Madsen NK, Christiansen O. Atomic-batched tensor decomposed two-electron repulsion integrals. J Chem Phys 2017; 146:134112. [DOI: 10.1063/1.4979571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Gunnar Schmitz
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| | | | - Ove Christiansen
- Department of Chemistry, Aarhus Universitet, DK-8000 Aarhus, Denmark
| |
Collapse
|
44
|
Schmitz G, Hättig C. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques. J Chem Phys 2016; 145:234107. [DOI: 10.1063/1.4972001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Gunnar Schmitz
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| |
Collapse
|
45
|
Frank MS, Schmitz G, Hättig C. The PNO–MP2 gradient and its application to molecular geometry optimisations. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1263762] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Marius S. Frank
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| | - Gunnar Schmitz
- Deparment of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
46
|
Affiliation(s)
- Reinhold F. Fink
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 74076 Tübingen, Germany
| |
Collapse
|
47
|
Nagy PR, Samu G, Kállay M. An Integral-Direct Linear-Scaling Second-Order Møller-Plesset Approach. J Chem Theory Comput 2016; 12:4897-4914. [PMID: 27618512 DOI: 10.1021/acs.jctc.6b00732] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An integral-direct, iteration-free, linear-scaling, local second-order Møller-Plesset (MP2) approach is presented, which is also useful for spin-scaled MP2 calculations as well as for the efficient evaluation of the perturbative terms of double-hybrid density functionals. The method is based on a fragmentation approximation: the correlation contributions of the individual electron pairs are evaluated in domains constructed for the corresponding localized orbitals, and the correlation energies of distant electron pairs are computed with multipole expansions. The required electron repulsion integrals are calculated directly invoking the density fitting approximation; the storage of integrals and intermediates is avoided. The approach also utilizes natural auxiliary functions to reduce the size of the auxiliary basis of the domains and thereby the operation count and memory requirement. Our test calculations show that the approach recovers 99.9% of the canonical MP2 correlation energy and reproduces reaction energies with an average (maximum) error below 1 kJ/mol (4 kJ/mol). Our benchmark calculations demonstrate that the new method enables MP2 calculations for molecules with more than 2300 atoms and 26000 basis functions on a single processor.
Collapse
Affiliation(s)
- Péter R Nagy
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics , P.O. Box 91, Budapest H-1521, Hungary
| | - Gyula Samu
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics , P.O. Box 91, Budapest H-1521, Hungary
| | - Mihály Kállay
- MTA-BME Lendület Quantum Chemistry Research Group, Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics , P.O. Box 91, Budapest H-1521, Hungary
| |
Collapse
|
48
|
Helmich-Paris B, Repisky M, Visscher L. Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians. J Chem Phys 2016; 145:014107. [DOI: 10.1063/1.4955106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Benjamin Helmich-Paris
- Section of Theoretical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Michal Repisky
- CTCC, Department of Chemistry, UIT The Arctic University of Norway, N-9037 Tromø, Norway
| | - Lucas Visscher
- Section of Theoretical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
49
|
Wang YM, Hättig C, Reine S, Valeev E, Kjærgaard T, Kristensen K. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. J Chem Phys 2016; 144:204112. [DOI: 10.1063/1.4951696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Yang Min Wang
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Christof Hättig
- Lehrstuhl für Theoretische Chemie, Ruhr-Universität Bochum, D-44780 Bochum, Germany
| | - Simen Reine
- Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.O. Box 1033, N-1315 Blindern, Norway
| | - Edward Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Thomas Kjærgaard
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| | - Kasper Kristensen
- qLEAP Center for Theoretical Chemistry, Department of Chemistry, Aarhus University, Langelandsgade 140, DK-8000 Aarhus C, Denmark
| |
Collapse
|
50
|
Segarra-Martí J, Garavelli M, Aquilante F. Multiconfigurational Second-Order Perturbation Theory with Frozen Natural Orbitals Extended to the Treatment of Photochemical Problems. J Chem Theory Comput 2016; 11:3772-84. [PMID: 26574459 DOI: 10.1021/acs.jctc.5b00479] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new flavor of the frozen natural orbital complete active space second-order perturbation theory method (FNO-CASPT2, Aquilante et al., J. Chem. Phys. 131, 034113) is proposed herein. In this new implementation, the virtual space in Cholesky decomposition-based CASPT2 computations (CD-CASPT2) is truncated by excluding those orbitals that contribute the least toward preserving a predefined value of the trace of an approximate density matrix, as that represents a measure of the amount of dynamic correlation retained in the model. In this way, the amount of correlation included is practically constant at all nuclear arrangements, thus allowing for the computation of smooth electronic states surfaces and energy gradients-essential requirements for theoretical studies in photochemistry. The method has been benchmarked for a series of relevant biochromophores for which large speed-ups have been recorded while retaining the accuracy achieved in the corresponding CD-CASPT2 calculations. Both vertical excitation energies and gradient calculations have been carried out to establish general guidelines as to how much correlation needs to be retained in the calculation for the results to be consistent with the CD-CASPT2 findings. Our results feature errors within a tenth of an eV for the most difficult cases and have been validated to be used for gradient computations where an up to 3-fold speed-up is observed depending on the size of the system and the basis set employed.
Collapse
Affiliation(s)
- Javier Segarra-Martí
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via Selmi 2, IT-40126 Bologna, Italy
| | - Marco Garavelli
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via Selmi 2, IT-40126 Bologna, Italy.,Université de Lyon, CNRS , Institut de Chimie de Lyon, École Normale Supérieure de Lyon, 46 Allée d'Italie, F-69364 Lyon Cedex 07, France
| | - Francesco Aquilante
- Dipartimento di Chimica "G. Ciamician", Università di Bologna , Via Selmi 2, IT-40126 Bologna, Italy
| |
Collapse
|