• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4643668)   Today's Articles (341)   Subscriber (50583)
For: Schmitz G, Helmich B, Hättig C. A scaling PNO–MP2 method using a hybrid OSV–PNO approach with an iterative direct generation of OSVs†. Mol Phys 2013. [DOI: 10.1080/00268976.2013.794314] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Number Cited by Other Article(s)
1
Petrov K, Csóka J, Kállay M. Analytic Gradients for Density Fitting MP2 Using Natural Auxiliary Functions. J Phys Chem A 2024;128:6566-6580. [PMID: 39074307 PMCID: PMC11317987 DOI: 10.1021/acs.jpca.4c02822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
2
Sorathia K, Frantzov D, Tew DP. Improved CPS and CBS Extrapolation of PNO-CCSD(T) Energies: The MOBH35 and ISOL24 Data Sets. J Chem Theory Comput 2024;20:2740-2750. [PMID: 38513261 PMCID: PMC11008106 DOI: 10.1021/acs.jctc.3c00974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/23/2024]
3
Kurian JS, Ye HZ, Mahajan A, Berkelbach TC, Sharma S. Toward Linear Scaling Auxiliary-Field Quantum Monte Carlo with Local Natural Orbitals. J Chem Theory Comput 2024;20:134-142. [PMID: 38113195 DOI: 10.1021/acs.jctc.3c01122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
4
Werner HJ, Hansen A. Accurate Calculation of Isomerization and Conformational Energies of Larger Molecules Using Explicitly Correlated Local Coupled Cluster Methods in Molpro and ORCA. J Chem Theory Comput 2023;19:7007-7030. [PMID: 37486154 DOI: 10.1021/acs.jctc.3c00270] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
5
Helmich-Paris B, de Souza B, Neese F, Izsák R. An improved chain of spheres for exchange algorithm. J Chem Phys 2021;155:104109. [PMID: 34525816 DOI: 10.1063/5.0058766] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]  Open
6
Stoychev GL, Auer AA, Gauss J, Neese F. DLPNO-MP2 second derivatives for the computation of polarizabilities and NMR shieldings. J Chem Phys 2021;154:164110. [PMID: 33940835 DOI: 10.1063/5.0047125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
7
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 8. Explicitly Correlated Open-Shell Coupled-Cluster with Pair Natural Orbitals PNO-RCCSD(T)-F12 and PNO-UCCSD(T)-F12. J Chem Theory Comput 2021;17:902-926. [PMID: 33405921 DOI: 10.1021/acs.jctc.0c01129] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
8
Tew DP. Principal domains in F12 explicitly correlated theory. ADVANCES IN QUANTUM CHEMISTRY 2021. [DOI: 10.1016/bs.aiq.2021.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
9
Yönder Ö, Schmitz G, Hättig C, Schmid R, Debiagi P, Hasse C, Locaspi A, Faravelli T. Can Small Polyaromatics Describe Their Larger Counterparts for Local Reactions? A Computational Study on the H-Abstraction Reaction by an H-Atom from Polyaromatics. J Phys Chem A 2020;124:9626-9637. [PMID: 33147026 DOI: 10.1021/acs.jpca.0c07133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
10
Sorathia K, Tew DP. Basis set extrapolation in pair natural orbital theories. J Chem Phys 2020;153:174112. [PMID: 33167642 DOI: 10.1063/5.0022077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
11
Frank MS, Schmitz G, Hättig C. Implementation of the iterative triples model CC3 for excitation energies using pair natural orbitals and Laplace transformation techniques. J Chem Phys 2020;153:034109. [PMID: 32716174 DOI: 10.1063/5.0012597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
12
Förster A, Visscher L. Double hybrid DFT calculations with Slater type orbitals. J Comput Chem 2020;41:1660-1684. [PMID: 32297682 PMCID: PMC7317772 DOI: 10.1002/jcc.26209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022]
13
Zhang IY, Xu X. On the top rung of Jacob's ladder of density functional theory: Toward resolving the dilemma of SIE and NCE. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1490] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
14
Lang J, Antalík A, Veis L, Brandejs J, Brabec J, Legeza Ö, Pittner J. Near-Linear Scaling in DMRG-Based Tailored Coupled Clusters: An Implementation of DLPNO-TCCSD and DLPNO-TCCSD(T). J Chem Theory Comput 2020;16:3028-3040. [PMID: 32275424 DOI: 10.1021/acs.jctc.0c00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
15
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 7. Local Open-Shell Coupled-Cluster Methods Using Pair Natural Orbitals: PNO-RCCSD and PNO-UCCSD. J Chem Theory Comput 2020;16:3135-3151. [PMID: 32275428 DOI: 10.1021/acs.jctc.0c00192] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
16
Saitow M, Yanai T. A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework. J Chem Phys 2020;152:114111. [PMID: 32199413 DOI: 10.1063/1.5142622] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
17
Förster A, Franchini M, van Lenthe E, Visscher L. A Quadratic Pair Atomic Resolution of the Identity Based SOS-AO-MP2 Algorithm Using Slater Type Orbitals. J Chem Theory Comput 2020;16:875-891. [PMID: 31930915 PMCID: PMC7027358 DOI: 10.1021/acs.jctc.9b00854] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Indexed: 01/04/2023]
18
Zhou R, Liang Q, Yang J. Complete OSV-MP2 Analytical Gradient Theory for Molecular Structure and Dynamics Simulations. J Chem Theory Comput 2019;16:196-210. [DOI: 10.1021/acs.jctc.9b00806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
19
Tew DP. Principal Domains in Local Correlation Theory. J Chem Theory Comput 2019;15:6597-6606. [PMID: 31622093 DOI: 10.1021/acs.jctc.9b00619] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
20
Kats D, Werner HJ. Multi-state local complete active space second-order perturbation theory using pair natural orbitals (PNO-MS-CASPT2). J Chem Phys 2019;150:214107. [DOI: 10.1063/1.5097644] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
21
Pinski P, Neese F. Analytical gradient for the domain-based local pair natural orbital second order Møller-Plesset perturbation theory method (DLPNO-MP2). J Chem Phys 2019;150:164102. [DOI: 10.1063/1.5086544] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]  Open
22
Lang J, Brabec J, Saitow M, Pittner J, Neese F, Demel O. Perturbative triples correction to domain-based local pair natural orbital variants of Mukherjee's state specific coupled cluster method. Phys Chem Chem Phys 2019;21:5022-5038. [PMID: 30762044 DOI: 10.1039/c8cp03577f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
23
Krause C, Werner HJ. Scalable Electron Correlation Methods. 6. Local Spin-Restricted Open-Shell Second-Order Møller-Plesset Perturbation Theory Using Pair Natural Orbitals: PNO-RMP2. J Chem Theory Comput 2019;15:987-1005. [PMID: 30571916 DOI: 10.1021/acs.jctc.8b01012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
24
Saitow M, Dutta AK, Neese F. Accurate Ionization Potentials, Electron Affinities and Electronegativities of Single-Walled Carbon Nanotubes by State-of-the-Art Local Coupled-Cluster Theory. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
25
Kozłowska J, Schwilk M, Roztoczyńska A, Bartkowiak W. Assessment of DFT for endohedral complexes' dipole moment: PNO-LCCSD-F12 as a reference method. Phys Chem Chem Phys 2018;20:29374-29388. [PMID: 30451255 DOI: 10.1039/c8cp05928d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
26
Peng C, Clement MC, Valeev EF. State-Averaged Pair Natural Orbitals for Excited States: A Route toward Efficient Equation of Motion Coupled-Cluster. J Chem Theory Comput 2018;14:5597-5607. [DOI: 10.1021/acs.jctc.8b00171] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
27
Saitow M, Neese F. Accurate spin-densities based on the domain-based local pair-natural orbital coupled-cluster theory. J Chem Phys 2018;149:034104. [PMID: 30037259 DOI: 10.1063/1.5027114] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]  Open
28
Ma Q, Werner H. Explicitly correlated local coupled‐cluster methods using pair natural orbitals. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2018. [DOI: 10.1002/wcms.1371] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
29
Pinski P, Neese F. Communication: Exact analytical derivatives for the domain-based local pair natural orbital MP2 method (DLPNO-MP2). J Chem Phys 2018;148:031101. [PMID: 29352787 DOI: 10.1063/1.5011204] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
30
Tew DP. Communication: Quasi-robust local density fitting. J Chem Phys 2018;148:011102. [PMID: 29306303 DOI: 10.1063/1.5013111] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
31
Frank MS, Hättig C. A pair natural orbital based implementation of CCSD excitation energies within the framework of linear response theory. J Chem Phys 2018;148:134102. [PMID: 29626892 DOI: 10.1063/1.5018514] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
32
Schmitz G, Christiansen O. Assessment of the overlap metric in the context of RI-MP2 and atomic batched tensor decomposed MP2. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
33
Brabec J, Lang J, Saitow M, Pittner J, Neese F, Demel O. Domain-Based Local Pair Natural Orbital Version of Mukherjee’s State-Specific Coupled Cluster Method. J Chem Theory Comput 2018;14:1370-1382. [DOI: 10.1021/acs.jctc.7b01184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
34
Ma Q, Werner HJ. Scalable Electron Correlation Methods. 5. Parallel Perturbative Triples Correction for Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals. J Chem Theory Comput 2017;14:198-215. [DOI: 10.1021/acs.jctc.7b01141] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
35
Fiedler B, Schmitz G, Hättig C, Friedrich J. Combining Accuracy and Efficiency: An Incremental Focal-Point Method Based on Pair Natural Orbitals. J Chem Theory Comput 2017;13:6023-6042. [PMID: 29045786 DOI: 10.1021/acs.jctc.7b00654] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
36
Ma Q, Schwilk M, Köppl C, Werner HJ. Scalable Electron Correlation Methods. 4. Parallel Explicitly Correlated Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD-F12). J Chem Theory Comput 2017;13:4871-4896. [DOI: 10.1021/acs.jctc.7b00799] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
37
Schwilk M, Ma Q, Köppl C, Werner HJ. Scalable Electron Correlation Methods. 3. Efficient and Accurate Parallel Local Coupled Cluster with Pair Natural Orbitals (PNO-LCCSD). J Chem Theory Comput 2017;13:3650-3675. [DOI: 10.1021/acs.jctc.7b00554] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
38
Höfener S, Klopper W. Natural transition orbitals for the calculation of correlation and excitation energies. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.04.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
39
Nagy PR, Kállay M. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. J Chem Phys 2017;146:214106. [PMID: 28576082 PMCID: PMC5453808 DOI: 10.1063/1.4984322] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/05/2017] [Indexed: 01/30/2023]  Open
40
Kjærgaard T, Baudin P, Bykov D, Kristensen K, Jørgensen P. The divide–expand–consolidate coupled cluster scheme. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1319] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
41
Schmitz G, Hättig C. Accuracy of Explicitly Correlated Local PNO-CCSD(T). J Chem Theory Comput 2017;13:2623-2633. [DOI: 10.1021/acs.jctc.7b00180] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
42
Kjærgaard T. The Laplace transformed divide-expand-consolidate resolution of the identity second-order Møller-Plesset perturbation (DEC-LT-RIMP2) theory method. J Chem Phys 2017;146:044103. [PMID: 28147513 DOI: 10.1063/1.4973710] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
43
Schmitz G, Madsen NK, Christiansen O. Atomic-batched tensor decomposed two-electron repulsion integrals. J Chem Phys 2017;146:134112. [DOI: 10.1063/1.4979571] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
44
Schmitz G, Hättig C. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques. J Chem Phys 2016;145:234107. [DOI: 10.1063/1.4972001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
45
Frank MS, Schmitz G, Hättig C. The PNO–MP2 gradient and its application to molecular geometry optimisations. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1263762] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
46
Fink RF. Why does MP2 work? J Chem Phys 2016;145:184101. [DOI: 10.1063/1.4966689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]  Open
47
Nagy PR, Samu G, Kállay M. An Integral-Direct Linear-Scaling Second-Order Møller-Plesset Approach. J Chem Theory Comput 2016;12:4897-4914. [PMID: 27618512 DOI: 10.1021/acs.jctc.6b00732] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
48
Helmich-Paris B, Repisky M, Visscher L. Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians. J Chem Phys 2016;145:014107. [DOI: 10.1063/1.4955106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
49
Wang YM, Hättig C, Reine S, Valeev E, Kjærgaard T, Kristensen K. Explicitly correlated second-order Møller-Plesset perturbation theory in a Divide-Expand-Consolidate (DEC) context. J Chem Phys 2016;144:204112. [DOI: 10.1063/1.4951696] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
50
Segarra-Martí J, Garavelli M, Aquilante F. Multiconfigurational Second-Order Perturbation Theory with Frozen Natural Orbitals Extended to the Treatment of Photochemical Problems. J Chem Theory Comput 2016;11:3772-84. [PMID: 26574459 DOI: 10.1021/acs.jctc.5b00479] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA