1
|
An NT, Duong NT, Tri NN, Trung NT. Role of O-H⋯O/S conventional hydrogen bonds in considerable C sp2 -H blue-shift in the binary systems of acetaldehyde and thioacetaldehyde with substituted carboxylic and thiocarboxylic acids. RSC Adv 2022; 12:35309-35319. [PMID: 36540253 PMCID: PMC9732747 DOI: 10.1039/d2ra05391h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/27/2022] [Indexed: 09/10/2024] Open
Abstract
Stable binary complexes of RCZOH⋯CH3CHZ (R = CH3, H, F; Z = O, S) are due to contributions from the O-H⋯O/S and Csp2 -H⋯O/S hydrogen bonds. The strength of Csp2 /O-H⋯O is 1.5 to 2 times greater than that of the Csp2 /O-H⋯S bond. The substitution of H(Csp2 ) of HCZOH by CH3 causes a decrease in complex stability, while the opposite trend occurs for the F atom. A very large red shift of the O-H stretching frequency in O-H⋯O/S bonds was observed. A surprising Csp2 -H blue shift up to 104.5 cm-1 was observed for the first time. It is found that the presence of O-H⋯O/S hydrogen bonds and a decisive role of intramolecular hyperconjugation interactions in the complex cause a significant blue shift of the Csp2 -H covalent bonds. A striking role of O compared to the S atom in determining the blue shift of Csp2 -H stretching vibration and stability of binary complexes is proposed. The obtained results show that the ratio of deprotonation enthalpy and proton affinity could be considered as an index for the classification of the non-conventional hydrogen bond. SAPT2+ results show that the strength of RCSOH⋯CH3CHS complexes is dominated by electrostatic and induction energies, while a larger contribution to the stability of remaining complexes is detected for the electrostatic component.
Collapse
Affiliation(s)
- Nguyen Truong An
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon Vietnam
| | - Nguyen Thi Duong
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon Vietnam
| | - Nguyen Ngoc Tri
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon Vietnam
- Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University Quy Nhon Vietnam
| | - Nguyen Tien Trung
- Faculty of Natural Sciences, Quy Nhon University Quy Nhon Vietnam
- Laboratory of Computational Chemistry and Modelling (LCCM), Quy Nhon University Quy Nhon Vietnam
| |
Collapse
|
2
|
Kraka E, Quintano M, La Force HW, Antonio JJ, Freindorf M. The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. J Phys Chem A 2022; 126:8781-8798. [DOI: 10.1021/acs.jpca.2c05962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Mateus Quintano
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Hunter W. La Force
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Juliana J. Antonio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, Texas75275-0314, United States
| |
Collapse
|
3
|
Madushanka A, Verma N, Freindorf M, Kraka E. Papaya Leaf Extracts as Potential Dengue Treatment: An In-Silico Study. Int J Mol Sci 2022; 23:12310. [PMID: 36293162 PMCID: PMC9610845 DOI: 10.3390/ijms232012310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) cause serious public health problems, with nearly 390 million people affected and 20,000 deaths per year in tropical and subtropical countries. Despite numerous attempts, no antiviral drug or vaccine is currently available to combat the manifestation. The challenge of discovering an efficient vaccine is enhanced by the surplus presence of efficient vectors and drug resistance from the virus. For centuries, papaya (Carica papaya) extracts have been traditionally used to treat DF, DHF, and DSS. In the present study, we systematically investigated seven compounds isolated from papaya leaf extract with regard to their potential as inhibitors for non-structural (NS) proteins, NS3 and NS5, which play a crucial role in viral RNA replication. The computational tools applied stretched across classical molecular docking, molecular dynamics (MD) simulations and SwissADME used to calculate binding affinities; binding free energies; Absorption, Distribution, Metabolism, and Excretion (ADME); and drug-likeness properties, thus, identifying Kaempferol, Chlorogenic acid, and Quercetin as potential candidates, with Kaempferol and Quercetin scoring best. Therefore, for the Kaempferol and Quercetin complexes, hybrid quantum mechanical/molecular mechanical (QM/MM) geometry and frequency calculations were performed, followed by the local mode analysis developed in our group to quantify Kaempferol-NS and Quercetin-NS hydrogen bonding. Given the non-toxic nature and the wide availability of the Kaempferol and Quercetin papaya extract in almost all of the susceptible regions, and our results showing high NS3 and NS5 binding affinities and energies, strong hydrogen bonding with both NS3 and NS5, and excellent ADME properties, we suggest Kaempferol and Quercetin as a strong NS3 and NS5 inhibitor to be further investigated in vitro.
Collapse
Affiliation(s)
| | | | | | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, P.O. Box 750314, Dallas, TX 75275, USA
| |
Collapse
|
4
|
Experimental and theoretical characterization of chelidonic acid structure. Struct Chem 2022. [DOI: 10.1007/s11224-022-02026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Abstract
Chelidonic acid (4-oxo-4H-pyran-2,6-dicarboxylic acid) is present in plants of Papaveraceae family, especially in Chelidonium majus. Due to its anticancer, antibacterial, hepatoprotective, and antioxidant properties, it has been used in medical treatments. In this work, the X-ray structure of methanol solvate of chelidonic acid was determined. Layers of chelidonic acid are held by hydrogen bonds via COOH and C = O fragments and additionally bridged by methanol. The formed H-bond network between two acid units is different from typical –COOH dimers observed, e.g., in crystals of isophtalic acid. The molecular structure of 2,6-dimethyl-γ-pyrone (2Me4PN) and chelidonic acid, a 2,6-dicarboxylic derivate of γ-pyrone (4PN), was verified in silico using density functional theory (DFT-B3LYP) combined with large correlation-consistent basis sets. The impact of –CH3 and –COOH substituents on 4PN ring structure, dipole moments, geometric/magnetic indexes of aromaticity, and NBO charges was assessed following unconstrained geometry optimization in the gas phase, chloroform, methanol, DMSO, and water with solvent effect introduced using the polarized continuous model (PCM). H-bond network formed in chelidonic acid–methanol complex was analyzed and their interaction energy estimated. Theoretical modeling enabled prediction of accurate structural parameters, dipole moments, and geometric/magnetic indexes of aromaticity of the studied 4PN, 2Me4PN, and chelidonic acid molecules.
Collapse
|
5
|
Freindorf M, Delgado AAA, Kraka E. CO bonding in hexa‐ and pentacoordinate carboxy‐neuroglobin: A quantum mechanics/molecular mechanics and local vibrational mode study. J Comput Chem 2022. [DOI: 10.1002/jcc.26973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Marek Freindorf
- Department of Chemistry Southern Methodist University Dallas Texas USA
| | | | - Elfi Kraka
- Department of Chemistry Southern Methodist University Dallas Texas USA
| |
Collapse
|
6
|
Mechanistic Details of the Sharpless Epoxidation of Allylic Alcohols—A Combined URVA and Local Mode Study. Catalysts 2022. [DOI: 10.3390/catal12070789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In this work, we investigated the catalytic effects of a Sharpless dimeric titanium (IV)–tartrate–diester catalyst on the epoxidation of allylalcohol with methyl–hydroperoxide considering four different orientations of the reacting species coordinated at the titanium atom (reactions R1–R4) as well as a model for the non-catalyzed reaction (reaction R0). As major analysis tools, we applied the URVA (Unified Reaction Valley Approach) and LMA (Local Mode Analysis), both being based on vibrational spectroscopy and complemented by a QTAIM analysis of the electron density calculated at the DFT level of theory. The energetics of each reaction were recalculated at the DLPNO-CCSD(T) level of theory. The URVA curvature profiles identified the important chemical events of all five reactions as peroxide OO bond cleavage taking place before the TS (i.e., accounting for the energy barrier) and epoxide CO bond formation together with rehybridization of the carbon atoms of the targeted CC double bond after the TS. The energy decomposition into reaction phase contribution phases showed that the major effect of the catalyst is the weakening of the OO bond to be broken and replacement of OH bond breakage in the non-catalyzed reaction by an energetically more favorable TiO bond breakage. LMA performed at all stationary points rounded up the investigation (i) quantifying OO bond weakening of the oxidizing peroxide upon coordination at the metal atom, (ii) showing that a more synchronous formation of the new CO epoxide bonds correlates with smaller bond strength differences between these bonds, and (iii) elucidating the different roles of the three TiO bonds formed between catalyst and reactants and their interplay as orchestrated by the Sharpless catalyst. We hope that this article will inspire the computational community to use URVA complemented with LMA in the future as an efficient mechanistic tool for the optimization and fine-tuning of current Sharpless catalysts and for the design new of catalysts for epoxidation reactions.
Collapse
|
7
|
Margaret McCutcheon M, Freindorf M, Kraka E. Bonding in Nitrile Photo-dissociating Ruthenium Drug Candidates --A Local Vibrational Mode Study. J Chem Phys 2022; 157:014301. [DOI: 10.1063/5.0094567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this work, we investigated bonding features 15 ruthenium complexes of the type [Ru(tpy)(L)-(CH3CN)]n+, containing the tridentate tpy ligand (tpy = 2,2':6',2'--terpyridine) and various bidentate ancillary ligands, 12 compounds originally synthesized by Loftus et al. (J. Phys. Chem. C 123, 10291-10299 (2019)) complemented with three additional complexes. The main focus of our work was to relate these local features to the experimental data of Loftus et al. which assess the efficiency of nitrile release in an indirect way via observed quantum yields for ruthenium water association after nitrile release. As a tool to quantitatively assess Ru-NC and Ru-L bonding we utilized the local vibrational mode analysis complemented by the topological analysis of the electron density and the natural bond orbital analysis. Interestingly, the stronger Ru-NC bonds have the greater observed quantum yields, leading to the conclusion that the observed quantum yields are a result of a complex interplay of several processes excluding a direct relationship between QY and Ru-NC or Ru-L bond strengths. We identified the ST splitting as one of the key players and not the Ru-NC bond strength, as one may have thought. In summary, this work has presented a modern computational tool set for the investigation of bonding features applied to nitrile photo-dissociating ruthenium drug candidates forming a valuable basis for future design and fine tuning of nitrile releasing ruthenium compounds, as well as for the understanding of how local properties affect overall experimental outcomes.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Chemistry, Southern Methodist University, United States of America
| |
Collapse
|
8
|
Töpfer K, Käser S, Meuwly M. Double proton transfer in hydrated formic acid dimer: Interplay of spatial symmetry and solvent-generated force on reactivity. Phys Chem Chem Phys 2022; 24:13869-13882. [PMID: 35620978 PMCID: PMC9176184 DOI: 10.1039/d2cp01583h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The double proton transfer (DPT) reaction in the hydrated formic acid dimer (FAD) is investigated at molecular-level detail. For this, a global and reactive machine learned (ML) potential energy surface (PES) is developed to run extensive (more than 100 ns) mixed ML/MM molecular dynamics (MD) simulations in explicit molecular mechanics (MM) solvent at MP2-quality for the solute. Simulations with fixed – as in a conventional empirical force field – and conformationally fluctuating – as available from the ML-based PES – charge models for FAD show a significant impact on the competition between DPT and dissociation of FAD into two formic acid monomers. With increasing temperature the barrier height for DPT in solution changes by about 10% (∼1 kcal mol−1) between 300 K and 600 K. The rate for DPT is largest, ∼1 ns−1, at 350 K and decreases for higher temperatures due to destabilisation and increased probability for dissociation of FAD. The water solvent is found to promote the first proton transfer by exerting a favourable solvent-induced Coulomb force along the O–H⋯O hydrogen bond whereas the second proton transfer is significantly controlled by the O–O separation and other conformational degrees of freedom. Double proton transfer in hydrated FAD is found to involve a subtle interplay and balance between structural and electrostatic factors. Simulation of double proton transfer in formic acid dimer by reactive ML potential in explicit molecular mechanics water solvent.![]()
Collapse
Affiliation(s)
- Kai Töpfer
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
9
|
Costa Peluzo BMT, Kraka E. Uranium: The Nuclear Fuel Cycle and Beyond. Int J Mol Sci 2022; 23:ijms23094655. [PMID: 35563047 PMCID: PMC9101921 DOI: 10.3390/ijms23094655] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 01/01/2023] Open
Abstract
This review summarizes the recent developments regarding the use of uranium as nuclear fuel, including recycling and health aspects, elucidated from a chemical point of view, i.e., emphasizing the rich uranium coordination chemistry, which has also raised interest in using uranium compounds in synthesis and catalysis. A number of novel uranium coordination features are addressed, such the emerging number of U(II) complexes and uranium nitride complexes as a promising class of materials for more efficient and safer nuclear fuels. The current discussion about uranium triple bonds is addressed by quantum chemical investigations using local vibrational mode force constants as quantitative bond strength descriptors based on vibrational spectroscopy. The local mode analysis of selected uranium nitrides, N≡U≡N, U≡N, N≡U=NH and N≡U=O, could confirm and quantify, for the first time, that these molecules exhibit a UN triple bond as hypothesized in the literature. We hope that this review will inspire the community interested in uranium chemistry and will serve as an incubator for fruitful collaborations between theory and experimentation in exploring the wealth of uranium chemistry.
Collapse
|
10
|
BF3–Catalyzed Diels–Alder Reaction between Butadiene and Methyl Acrylate in Aqueous Solution—An URVA and Local Vibrational Mode Study. Catalysts 2022. [DOI: 10.3390/catal12040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study we investigate the Diels–Alder reaction between methyl acrylate and butadiene, which is catalyzed by BF3 Lewis acid in explicit water solution, using URVA and Local Mode Analysis as major tools complemented with NBO, electron density and ring puckering analyses. We considered four different starting orientations of methyl acrylate and butadiene, which led to 16 DA reactions in total. In order to isolate the catalytic effects of the BF3 catalyst and those of the water environment and exploring how these effects are synchronized, we systematically compared the non-catalyzed reaction in gas phase and aqueous solution with the catalyzed reaction in gas phase and aqueous solution. Gas phase studies were performed at the B3LYP/6-311+G(2d,p) level of theory and studies in aqueous solution were performed utilizing a QM/MM approach at the B3LYP/6-311+G(2d,p)/AMBER level of theory. The URVA results revealed reaction path curvature profiles with an overall similar pattern for all 16 reactions showing the same sequence of CC single bond formation for all of them. In contrast to the parent DA reaction with symmetric substrates causing a synchronous bond formation process, here, first the new CC single bond on the CH2 side of methyl acrylate is formed followed by the CC bond at the ester side. As for the parent DA reaction, both bond formation events occur after the TS, i.e., they do not contribute to the energy barrier. What determines the barrier is the preparation process for CC bond formation, including the approach diene and dienophile, CC bond length changes and, in particular, rehybridization of the carbon atoms involved in the formation of the cyclohexene ring. This process is modified by both the BF3 catalyst and the water environment, where both work in a hand-in-hand fashion leading to the lowest energy barrier of 9.06 kcal/mol found for the catalyzed reaction R1 in aqueous solution compared to the highest energy barrier of 20.68 kcal/mol found for the non-catalyzed reaction R1 in the gas phase. The major effect of the BF3 catalyst is the increased mutual polarization and the increased charge transfer between methyl acrylate and butadiene, facilitating the approach of diene and dienophile and the pyramidalization of the CC atoms involved in the ring formation, which leads to a lowering of the activation energy. The catalytic effect of water solution is threefold. The polar environment leads also to increased polarization and charge transfer between the reacting species, similar as in the case of the BF3 catalyst, although to a smaller extend. More important is the formation of hydrogen bonds with the reaction complex, which are stronger for the TS than for the reactant, thus stabilizing the TS which leads to a further reduction of the activation energy. As shown by the ring puckering analysis, the third effect of water is space confinement of the reacting partners, conserving the boat form of the six-member ring from the entrance to the exit reaction channel. In summary, URVA combined with LMA has led to a clearer picture on how both BF3 catalyst and aqueous environment in a synchronized effort lower the reaction barrier. These new insights will serve to further fine-tune the DA reaction of methyl acrylate and butadiene and DA reactions in general.
Collapse
|
11
|
Nanayakkara S, Tao Y, Kraka E. Capturing Individual Hydrogen Bond Strengths in Ices via Periodic Local Vibrational Mode Theory: Beyond the Lattice Energy Picture. J Chem Theory Comput 2021; 18:562-579. [PMID: 34928619 DOI: 10.1021/acs.jctc.1c00357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Local stretching force constants derived from periodic local vibrational modes at the vdW-DF2 density functional level have been employed to quantify the intrinsic hydrogen bond strength of 16 ice polymorphs, ices Ih, II, III, IV, V, VI, VII, VIII, IX, XI, XII, XIII, XIV, XV, XVII, and XIX, that are stable under ambient to elevated pressures. Based on this characterization on 1820 hydrogen bonds, relationships between local stretching force constants and structural parameters such as hydrogen bond length and angle were identified. Moreover, different bond strength distributions, from uniform to inhomogeneous, were observed for the 16 ices and could be explained in relation to different local structural elements within ices, that is, rings, that consist of different hydrogen bond types. In addition, criteria for the classification of hydrogen bonds as strong, intermediate, and weak were introduced. The latter was used to explore a different dimension of the water-ice phase diagram. These findings will provide important guidelines for assessing the credibility of new ice structures.
Collapse
Affiliation(s)
- Sadisha Nanayakkara
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
12
|
Kabir MP, Orozco-Gonzalez Y, Hastings G, Gozem S. The effect of hydrogen-bonding on flavin's infrared absorption spectrum. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 262:120110. [PMID: 34224983 DOI: 10.1016/j.saa.2021.120110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Cluster and continuum solvation computational models are employed to model the effect of hydrogen bonding interactions on the vibrational modes of lumiflavin. Calculated spectra were compared to experimental Fourier-transform infrared (FTIR) spectra in the diagnostic 1450-1800 cm-1 range, where intense νC=C, νC=N, [Formula: see text] , and [Formula: see text] stretching modes of flavin's isoalloxazine ring are found. Local mode analysis is used to describe the strength of hydrogen-bonding in cluster models. The computations indicate that νC=C and νC=N mode frequencies are relatively insensitive to intermolecular interactions while the [Formula: see text] and [Formula: see text] modes are sensitive to direct (and also indirect for [Formula: see text] ) hydrogen-bonding interactions. Although flavin is neutral, basis sets without the diffuse functions provide incorrect relative frequencies and intensities. The 6-31+G* basis set is found to be adequate for this system, and there is limited benefit to considering larger basis sets. Calculated vibrational mode frequencies agree with experimentally determined frequencies in solution when cluster models with multiple water molecules are used. Accurate simulation of relative FTIR band intensities, on the other hand, requires a continuum (or possibly quantum mechanical/molecular mechanical) model that accounts for long-range electrostatic effects. Finally, an experimental peak at ca. 1624 cm-1 that is typically assigned to the [Formula: see text] vibrational stretching mode has a complicated shape that suggests multiple underlying contributions. Our calculations show that this band has contributions from both the C6-C7 and C2 = O stretching vibrations.
Collapse
Affiliation(s)
- Mohammad Pabel Kabir
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States
| | | | - Gary Hastings
- Department of Physics and Astronomy, Georgia State University, Atlanta, GA 30302, United States; Center for Nano-Optics, Georgia State University, Atlanta, GA 30302, United States.
| | - Samer Gozem
- Department of Chemistry, Georgia State University, Atlanta, GA 30302, United States.
| |
Collapse
|
13
|
Käser S, Meuwly M. Transfer learned potential energy surfaces: accurate anharmonic vibrational dynamics and dissociation energies for the formic acid monomer and dimer. Phys Chem Chem Phys 2021; 24:5269-5281. [PMID: 34792523 PMCID: PMC8890265 DOI: 10.1039/d1cp04393e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational dynamics of the formic acid monomer (FAM) and dimer (FAD) is investigated from machine-learned potential energy surfaces at the MP2 (PESMP2) and transfer-learned (PESTL) to the CCSD(T) levels of theory. The normal mode (MAEs of 17.6 and 25.1 cm−1) and second order vibrational perturbation theory (VPT2, MAEs of 6.7 and 17.1 cm−1) frequencies from PESTL for all modes below 2000 cm−1 for FAM and FAD agree favourably with experiment. For the OH stretch mode the experimental frequencies are overestimated by more than 150 cm−1 for both FAM and FAD from normal mode calculations. Conversely, VPT2 calculations on PESTL for FAM reproduce the experimental OH frequency to within 22 cm−1. For FAD the VPT2 calculations find the high-frequency OH stretch at 3011 cm−1, compared with an experimentally reported, broad (∼100 cm−1) absorption band with center frequency estimated at ∼3050 cm−1. In agreement with earlier reports, MD simulations at higher temperature shift the position of the OH-stretch in FAM to the red, consistent with improved sampling of the anharmonic regions of the PES. However, for FAD the OH-stretch shifts to the blue and for temperatures higher than 1000 K the dimer partly or fully dissociates using PESTL. Including zero-point energy corrections from diffusion Monte Carlo simulations for FAM and FAD and corrections due to basis set superposition and completeness errors yields a dissociation energy of D0 = −14.23 ± 0.08 kcal mol−1 compared with an experimentally determined value of −14.22 ± 0.12 kcal mol−1. Neural network based PESs are constructed for formic acid monomer and dimer at the MP2 and transfer learned to the CCSD(T) level of theory. The PESs are used to study the vibrational dynamics and dissociation energy of the molecules.![]()
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, CH-4056 Basel, Switzerland.
| |
Collapse
|
14
|
Altun Z, Bleda EA, Trindle C. Focal Point Evaluation of Energies for Tautomers and Isomers for 3-Hydroxy-2-Butenamide: Evaluation of Competing Internal Hydrogen Bonds of Types -OH…O=, -OH…N, -NH…O=, and CH…X (X=O and N). Molecules 2021; 26:molecules26092623. [PMID: 33946257 PMCID: PMC8124485 DOI: 10.3390/molecules26092623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022] Open
Abstract
The title compound is a small molecule with many structural variations; it can illustrate a variety of internal hydrogen bonds, among other noncovalent interactions. Here we examine structures displaying hydrogen bonding between carbonyl oxygen and hydroxyl H; between carbonyl oxygen and amino H; hydroxyl H and amino N; hydroxyl O and amino H. We also consider H-bonding in its tautomer 2-oxopropanamide. By extrapolation algorithms applied to Hartree-Fock and correlation energies as estimated in HF, MP2, and CCSD calculations using the cc-pVNZ correlation-consistent basis sets (N = 2, 3, and 4) we obtain reliable relative energies of the isomeric forms. Assuming that such energy differences may be attributed to the presence of the various types of hydrogen bonding, we attempt to infer relative strengths of types of H-bonding. The Atoms in Molecules theory of Bader and the Local Vibrational Modes analysis of Cremer and Kraka are applied to this task. Hydrogen bonds are ranked by relative strength as measured by local stretching force constants, with the stronger =O…HO- > NH…O= > -OH…N well separated from a cluster > NH…O= ≈ >NH…OH ≈ CH…O= of comparable and intermediate strength. Weaker but still significant interactions are of type CH…N which is stronger than CH…OH.
Collapse
Affiliation(s)
- Zikri Altun
- Physics Department, Marmara University, Göztepe Kampus, Istanbul 34772, Turkey; (Z.A.); (E.A.B.)
| | - Erdi Ata Bleda
- Physics Department, Marmara University, Göztepe Kampus, Istanbul 34772, Turkey; (Z.A.); (E.A.B.)
| | - Carl Trindle
- Chemistry Department, University of Virginia, Charlottesville, VA 22902, USA
- Correspondence: ; Tel.: +1-4347709197
| |
Collapse
|
15
|
Assessing the Intrinsic Strengths of Ion–Solvent and Solvent–Solvent Interactions for Hydrated Mg2+ Clusters. INORGANICS 2021. [DOI: 10.3390/inorganics9050031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Information resulting from a comprehensive investigation into the intrinsic strengths of hydrated divalent magnesium clusters is useful for elucidating the role of aqueous solvents on the Mg2+ ion, which can be related to those in bulk aqueous solution. However, the intrinsic Mg–O and intermolecular hydrogen bond interactions of hydrated magnesium ion clusters have yet to be quantitatively measured. In this work, we investigated a set of 17 hydrated divalent magnesium clusters by means of local vibrational mode force constants calculated at the ωB97X-D/6-311++G(d,p) level of theory, where the nature of the ion–solvent and solvent–solvent interactions were interpreted from topological electron density analysis and natural population analysis. We found the intrinsic strength of inner shell Mg–O interactions for [Mg(H2O)n]2+ (n = 1–6) clusters to relate to the electron density at the bond critical point in Mg–O bonds. From the application of a secondary hydration shell to [Mg(H2O)n]2+ (n = 5–6) clusters, stronger Mg–O interactions were observed to correspond to larger instances of charge transfer between the lp(O) orbitals of the inner hydration shell and the unfilled valence shell of Mg. As the charge transfer between water molecules of the first and second solvent shell increased, so did the strength of their intermolecular hydrogen bonds (HBs). Cumulative local vibrational mode force constants of explicitly solvated Mg2+, having an outer hydration shell, reveal a CN of 5, rather than a CN of 6, to yield slightly more stable configurations in some instances. However, the cumulative local mode stretching force constants of implicitly solvated Mg2+ show the six-coordinated cluster to be the most stable. These results show that such intrinsic bond strength measures for Mg–O and HBs offer an effective way for determining the coordination number of hydrated magnesium ion clusters.
Collapse
|
16
|
Beiranvand N, Freindorf M, Kraka E. Hydrogen Bonding in Natural and Unnatural Base Pairs-A Local Vibrational Mode Study. Molecules 2021; 26:2268. [PMID: 33919989 PMCID: PMC8071019 DOI: 10.3390/molecules26082268] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
In this work hydrogen bonding in a diverse set of 36 unnatural and the three natural Watson Crick base pairs adenine (A)-thymine (T), adenine (A)-uracil (U) and guanine (G)-cytosine (C) was assessed utilizing local vibrational force constants derived from the local mode analysis, originally introduced by Konkoli and Cremer as a unique bond strength measure based on vibrational spectroscopy. The local mode analysis was complemented by the topological analysis of the electronic density and the natural bond orbital analysis. The most interesting findings of our study are that (i) hydrogen bonding in Watson Crick base pairs is not exceptionally strong and (ii) the N-H⋯N is the most favorable hydrogen bond in both unnatural and natural base pairs while O-H⋯N/O bonds are the less favorable in unnatural base pairs and not found at all in natural base pairs. In addition, the important role of non-classical C-H⋯N/O bonds for the stabilization of base pairs was revealed, especially the role of C-H⋯O bonds in Watson Crick base pairs. Hydrogen bonding in Watson Crick base pairs modeled in the DNA via a QM/MM approach showed that the DNA environment increases the strength of the central N-H⋯N bond and the C-H⋯O bonds, and at the same time decreases the strength of the N-H⋯O bond. However, the general trends observed in the gas phase calculations remain unchanged. The new methodology presented and tested in this work provides the bioengineering community with an efficient design tool to assess and predict the type and strength of hydrogen bonding in artificial base pairs.
Collapse
Affiliation(s)
| | | | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Ave, Dallas, TX 75275-0314, USA; (N.B.); (M.F.)
| |
Collapse
|
17
|
Abstract
We systematically investigated iodine–metal and iodine–iodine bonding in van Koten’s pincer complex and 19 modifications changing substituents and/or the transition metal with a PBE0–D3(BJ)/aug–cc–pVTZ/PP(M,I) model chemistry. As a novel tool for the quantitative assessment of the iodine–metal and iodine–iodine bond strength in these complexes we used the local mode analysis, originally introduced by Konkoli and Cremer, complemented with NBO and Bader’s QTAIM analyses. Our study reveals the major electronic effects in the catalytic activity of the M–I–I non-classical three-center bond of the pincer complex, which is involved in the oxidative addition of molecular iodine I2 to the metal center. According to our investigations the charge transfer from the metal to the σ* antibonding orbital of the I–I bond changes the 3c–4e character of the M–I–I three-center bond, which leads to weakening of the iodine I–I bond and strengthening of the metal–iodine M–I bond, facilitating in this way the oxidative addition of I2 to the metal. The charge transfer can be systematically modified by substitution at different places of the pincer complex and by different transition metals, changing the strength of both the M–I and the I2 bonds. We also modeled for the original pincer complex how solvents with different polarity influence the 3c–4e character of the M–I–I bond. Our results provide new guidelines for the design of pincer complexes with specific iodine–metal bond strengths and introduce the local vibrational mode analysis as an efficient tool to assess the bond strength in complexes.
Collapse
|
18
|
Verma N, Tao Y, Kraka E. Systematic Detection and Characterization of Hydrogen Bonding in Proteins via Local Vibrational Modes. J Phys Chem B 2021; 125:2551-2565. [DOI: 10.1021/acs.jpcb.0c11392] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Niraj Verma
- Department of Chemistry, Southern Methodist University, Dallas Texas United States
| | - Yunwen Tao
- Department of Chemistry, Southern Methodist University, Dallas Texas United States
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, Dallas Texas United States
| |
Collapse
|
19
|
Delgado AAA, Humason A, Kalescky R, Freindorf M, Kraka E. Exceptionally Long Covalent CC Bonds-A Local Vibrational Mode Study. Molecules 2021; 26:molecules26040950. [PMID: 33670107 PMCID: PMC7916873 DOI: 10.3390/molecules26040950] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/04/2021] [Accepted: 02/07/2021] [Indexed: 01/29/2023] Open
Abstract
For decades one has strived to synthesize a compound with the longest covalent C−C bond applying predominantly steric hindrance and/or strain to achieve this goal. On the other hand electronic effects have been added to the repertoire, such as realized in the electron deficient ethane radical cation in its D3d form. Recently, negative hyperconjugation effects occurring in diamino-o-carborane analogs such as di-N,N-dimethylamino-o-carborane have been held responsible for their long C−C bonds. In this work we systematically analyzed CC bonding in a diverse set of 53 molecules including clamped bonds, highly sterically strained complexes such as diamondoid dimers, electron deficient species, and di-N,N-dimethylamino-o-carborane to cover the whole spectrum of possibilities for elongating a covalent C−C bond to the limit. As a quantitative intrinsic bond strength measure, we utilized local vibrational CC stretching force constants ka(CC) and related bond strength orders BSO n(CC), computed at the ωB97X-D/aug-cc-pVTZ level of theory. Our systematic study quantifies for the first time that whereas steric hindrance and/or strain definitely elongate a C−C bond, electronic effects can lead to even longer and weaker C−C bonds. Within our set of molecules the electron deficient ethane radical cation, in D3d symmetry, acquires the longest C−C bond with a length of 1.935 Å followed by di-N,N-dimethylamino-o-carborane with a bond length of 1.930 Å. However, the C−C bond in di-N,N-dimethylamino-o-carborane is the weakest with a BSO n value of 0.209 compared to 0.286 for the ethane radical cation; another example that the longer bond is not always the weaker bond. Based on our findings we provide new guidelines for the general characterization of CC bonds based on local vibrational CC stretching force constants and for future design of compounds with long C−C bonds.
Collapse
|
20
|
Oliveira MAS, Oliveira RSS, Borges I. Quantifying bond strengths via a Coulombic force model: application to the impact sensitivity of nitrobenzene, nitrogen-rich nitroazole, and non-aromatic nitramine molecules. J Mol Model 2021; 27:69. [PMID: 33543327 DOI: 10.1007/s00894-021-04669-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/12/2021] [Indexed: 11/28/2022]
Abstract
The quantification of bond strengths is a useful and general concept in chemistry. In this work, a Coulombic force model based on atomic electric charges computed using the accurate distributed multipole analysis (DMA) partition of the molecular charge density was employed to quantify the weakest N-NO2 and C-NO2 bond strengths of 19 nitrobenzene, 11 nitroazole, and 10 nitramine molecules. These bonds are known as trigger linkages because they are usually related to the initiation of an explosive. The three families of explosives combine different types of molecular properties and structures ranging from essentially aromatic molecules (nitrobenzenes) to others with moderate aromaticity (nitroazoles) and non-aromatic molecules with cyclic and acyclic skeletons (nitramines). We used the results to investigate the impact sensitivity of the corresponding explosives employing the trigger linkage concept. For this purpose, the computed Coulombic bond strength of the trigger linkages was used to build four sensitivity models that lead to an overall good agreement between the predicted values and available experimental sensitivity values even when the model included the three chemical families simultaneously. We discussed the role of the trigger linkages for determining the sensitivity of the explosives and rationalized eventual discrepancies in the models by examining alternative decomposition mechanisms and features of the molecular structures.
Collapse
Affiliation(s)
- Marco Aurélio Souza Oliveira
- Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Rio de Janeiro, RJ, 22290-270, Brazil
| | | | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Praça General Tibúrcio, 80, Rio de Janeiro, RJ, 22290-270, Brazil.
| |
Collapse
|
21
|
Delgado AAA, Sethio D, Munar I, Aviyente V, Kraka E. Local vibrational mode analysis of ion-solvent and solvent-solvent interactions for hydrated Ca 2+ clusters. J Chem Phys 2020; 153:224303. [PMID: 33317306 DOI: 10.1063/5.0034765] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydrated calcium ion clusters have received considerable attention due to their essential role in biological processes such as bone development, hormone regulation, blood coagulation, and neuronal signaling. To better understand the biological role of the cation, the interactions between the Ca2+ ions and water molecules have been frequently investigated. However, a quantitative measure for the intrinsic Ca-O (ion-solvent) and intermolecular hydrogen bond (solvent-solvent) interactions has been missing so far. Here, we report a topological electron density analysis and a natural population analysis to analyze the nature of these interactions for a set of 14 hydrated calcium clusters via local mode stretching force constants obtained at the ωB97X-D/6-311++G(d,p) level of theory. The results revealed that the strength of inner Ca-O interactions for Ca(H2O)n 2+ (n = 1-8) clusters correlates with the electron density. The application of a second hydration shell to Ca(H2O)n 2+ (n = 6-8) clusters resulted in stronger Ca-O interactions where a larger electron charge transfer between lp(O) of the first hydration shell and the lower valence of Ca prevailed. The strength of the intermolecular hydrogen bonds, formed between the first and second hydration shells, became stronger when the charge transfers between hydrogen bond (HB) donors and HB acceptors were enhanced. From the local mode stretching force constants of implicitly and explicitly solvated Ca2+, we found the six-coordinated cluster to possess the strongest stabilizations, and these results prove that the intrinsic bond strength measures for Ca-O and hydrogen bond interactions form new effective tools to predict the coordination number for the hydrated calcium ion clusters.
Collapse
Affiliation(s)
- Alexis A A Delgado
- Department of Chemistry, Computational and Theoretical Chemistry Group (CATCO), Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA
| | - Daniel Sethio
- Department of Chemistry - BMC, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Ipek Munar
- Department of Chemistry, Boǧaziçi University, Bebek 34342, Istanbul, Turkey
| | - Viktorya Aviyente
- Department of Chemistry, Boǧaziçi University, Bebek 34342, Istanbul, Turkey
| | - Elfi Kraka
- Department of Chemistry, Computational and Theoretical Chemistry Group (CATCO), Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, USA
| |
Collapse
|
22
|
Nanayakkara S, Freindorf M, Tao Y, Kraka E. Modeling Hydrogen Release from Water with Borane and Alane Catalysts: A Unified Reaction Valley Approach. J Phys Chem A 2020; 124:8978-8993. [PMID: 33064477 DOI: 10.1021/acs.jpca.0c07244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The unified reaction valley approach combined with the local vibrational mode and ring puckering analysis is applied to investigate the hydrogen evolution from water in the presence of small hydrides such as BH3, metal hydrides as AlH3, and their derivatives. We studied a series of reactions involving BH3, AlH3, B2H6, Al2H6, and AlH3BH3 with one- and two-water molecules, considering multiple reaction paths. In addition, the influence of the aqueous medium was examined. A general reaction mechanism was identified for most of the reactions. Those that deviate could be associated with unusually high reaction barriers with no hydrogen release. The charge transfer along the reaction path suggests that a viable hydrogen release is achieved when the catalyst adopts the role of a charge donor during the chemical processes. The puckering analysis showed that twistboat and boat forms are the predominant configurations in the case of an intermediate six-membered ring formation, which influences the activation barrier. The local mode analysis was used as a tool to detect the H-H bond formation as well as to probe catalyst regenerability. Based on the correlation between the activation energy and the change in the charge separation for cleaving O-H and B(Al)-H bonds, two promising subsets of reactions could be identified along with prescriptions for lowering the reaction barrier individually with electron-donating/withdrawing substituents.
Collapse
Affiliation(s)
- Sadisha Nanayakkara
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
23
|
Martins JBL, Quintino RP, Politi JRDS, Sethio D, Gargano R, Kraka E. Computational analysis of vibrational frequencies and rovibrational spectroscopic constants of hydrogen sulfide dimer using MP2 and CCSD(T). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118540. [PMID: 32502813 DOI: 10.1016/j.saa.2020.118540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/18/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Previous studies have shown that the weakly bonded H2S dimer demands high level quantum chemical calculations to reproduce experimental values. We investigated the hydrogen bonding of H2S dimer using MP2 and CCSD(T) levels of theory in combination with aug-cc-pV(D,T,Q)Z basis sets. More precisely, the binding energies, potential energy curves, rovibrational spectroscopic constants, decomposition lifetime, and normal vibrational frequencies were calculated. In addition, we introduced the local mode analysis of Konkoli-Cremer to quantify the hydrogen bonding in the H2S dimer as well as providing for the first time the comprehensive decomposition of normal vibrational modes into local modes contributions, and a decomposition lifetime based on rate constant. The local mode force constant of the H2S dimer hydrogen bond is smaller than that of the water dimer, in accordance with the weaker hydrogen bonding in the H2S dimer.
Collapse
Affiliation(s)
- João B L Martins
- Institute of Chemistry, University of Brasília, Brasília, DF 70910-900, Brazil.
| | - Rabeshe P Quintino
- Institute of Chemistry, University of Brasília, Brasília, DF 70910-900, Brazil
| | - José R Dos S Politi
- Institute of Chemistry, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Daniel Sethio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, United States
| | - Ricardo Gargano
- Institute of Physics, University of Brasília, Brasília, DF 70910-900, Brazil
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, United States
| |
Collapse
|
24
|
Freindorf M, Kraka E. Critical assessment of the FeC and CO bond strength in carboxymyoglobin: a QM/MM local vibrational mode study. J Mol Model 2020; 26:281. [DOI: 10.1007/s00894-020-04519-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
|
25
|
Local Vibrational Mode Analysis of π–Hole Interactions between Aryl Donors and Small Molecule Acceptors. CRYSTALS 2020. [DOI: 10.3390/cryst10070556] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
11 aryl–lone pair and three aryl–anion π –hole interactions are investigated, along with the argon–benzene dimer and water dimer as reference compounds, utilizing the local vibrational mode theory, originally introduced by Konkoli and Cremer, to quantify the strength of the π –hole interaction in terms of a new local vibrational mode stretching force constant between the two engaged monomers, which can be conveniently used to compare different π –hole systems. Several factors have emerged which influence strength of the π –hole interactions, including aryl substituent effects, the chemical nature of atoms composing the aryl rings/ π –hole acceptors, and secondary bonding interactions between donors/acceptors. Substituent effects indirectly affect the π –hole interaction strength, where electronegative aryl-substituents moderately increase π –hole interaction strength. N-aryl members significantly increase π –hole interaction strength, and anion acceptors bind more strongly with the π –hole compared to charge neutral acceptors (lone–pair donors). Secondary bonding interactions between the acceptor and the atoms in the aryl ring can increase π –hole interaction strength, while hydrogen bonding between the π –hole acceptor/donor can significantly increase or decrease strength of the π –hole interaction depending on the directionality of hydrogen bond donation. Work is in progress expanding this research on aryl π –hole interactions to a large number of systems, including halides, CO, and OCH3− as acceptors, in order to derive a general design protocol for new members of this interesting class of compounds.
Collapse
|
26
|
|
27
|
Exploring the Mechanism of Catalysis with the Unified Reaction Valley Approach (URVA)—A Review. Catalysts 2020. [DOI: 10.3390/catal10060691] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The unified reaction valley approach (URVA) differs from mainstream mechanistic studies, as it describes a chemical reaction via the reaction path and the surrounding reaction valley on the potential energy surface from the van der Waals region to the transition state and far out into the exit channel, where the products are located. The key feature of URVA is the focus on the curving of the reaction path. Moving along the reaction path, any electronic structure change of the reacting molecules is registered by a change in their normal vibrational modes and their coupling with the path, which recovers the curvature of the reaction path. This leads to a unique curvature profile for each chemical reaction with curvature minima reflecting minimal change and curvature maxima, the location of important chemical events such as bond breaking/forming, charge polarization and transfer, rehybridization, etc. A unique decomposition of the path curvature into internal coordinate components provides comprehensive insights into the origins of the chemical changes taking place. After presenting the theoretical background of URVA, we discuss its application to four diverse catalytic processes: (i) the Rh catalyzed methanol carbonylation—the Monsanto process; (ii) the Sharpless epoxidation of allylic alcohols—transition to heterogenous catalysis; (iii) Au(I) assisted [3,3]-sigmatropic rearrangement of allyl acetate; and (iv) the Bacillus subtilis chorismate mutase catalyzed Claisen rearrangement—and show how URVA leads to a new protocol for fine-tuning of existing catalysts and the design of new efficient and eco-friendly catalysts. At the end of this article the pURVA software is introduced. The overall goal of this article is to introduce to the chemical community a new protocol for fine-tuning existing catalytic reactions while aiding in the design of modern and environmentally friendly catalysts.
Collapse
|
28
|
Kraka E, Zou W, Tao Y. Decoding chemical information from vibrational spectroscopy data: Local vibrational mode theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1480] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Elfi Kraka
- Department of Chemistry Southern Methodist University Dallas Texas USA
| | - Wenli Zou
- Institute of Modern Physics Northwest University and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an Shaanxi PR China
| | - Yunwen Tao
- Department of Chemistry Southern Methodist University Dallas Texas USA
| |
Collapse
|
29
|
Verma N, Tao Y, Zou W, Chen X, Chen X, Freindorf M, Kraka E. A Critical Evaluation of Vibrational Stark Effect (VSE) Probes with the Local Vibrational Mode Theory. SENSORS 2020; 20:s20082358. [PMID: 32326248 PMCID: PMC7219233 DOI: 10.3390/s20082358] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Over the past two decades, the vibrational Stark effect has become an important tool to measure and analyze the in situ electric field strength in various chemical environments with infrared spectroscopy. The underlying assumption of this effect is that the normal stretching mode of a target bond such as CO or CN of a reporter molecule (termed vibrational Stark effect probe) is localized and free from mass-coupling from other internal coordinates, so that its frequency shift directly reflects the influence of the vicinal electric field. However, the validity of this essential assumption has never been assessed. Given the fact that normal modes are generally delocalized because of mass-coupling, this analysis was overdue. Therefore, we carried out a comprehensive evaluation of 68 vibrational Stark effect probes and candidates to quantify the degree to which their target normal vibration of probe bond stretching is decoupled from local vibrations driven by other internal coordinates. The unique tool we used is the local mode analysis originally introduced by Konkoli and Cremer, in particular the decomposition of normal modes into local mode contributions. Based on our results, we recommend 31 polyatomic molecules with localized target bonds as ideal vibrational Stark effect probe candidates.
Collapse
Affiliation(s)
- Niraj Verma
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, Xi’an 710127, China;
| | - Xia Chen
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Xin Chen
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China;
| | - Marek Freindorf
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (N.V.); (Y.T.); (M.F.)
- Correspondence:
| |
Collapse
|
30
|
Tao Y, Qiu Y, Zou W, Nanayakkara S, Yannacone S, Kraka E. In Situ Assessment of Intrinsic Strength of X-I⋯OA-Type Halogen Bonds in Molecular Crystals with Periodic Local Vibrational Mode Theory. Molecules 2020; 25:molecules25071589. [PMID: 32235623 PMCID: PMC7181175 DOI: 10.3390/molecules25071589] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/03/2022] Open
Abstract
Periodic local vibrational modes were calculated with the rev-vdW-DF2 density functional to quantify the intrinsic strength of the X-I⋯OA-type halogen bonding (X = I or Cl; OA: carbonyl, ether and N-oxide groups) in 32 model systems originating from 20 molecular crystals. We found that the halogen bonding between the donor dihalogen X-I and the wide collection of acceptor molecules OA features considerable variations of the local stretching force constants (0.1–0.8 mdyn/Å) for I⋯O halogen bonds, demonstrating its powerful tunability in bond strength. Strong correlations between bond length and local stretching force constant were observed in crystals for both the donor X-I bonds and I⋯O halogen bonds, extending for the first time the generalized Badger’s rule to crystals. It is demonstrated that the halogen atom X controlling the electrostatic attraction between the σ-hole on atom I and the acceptor atom O dominates the intrinsic strength of I⋯O halogen bonds. Different oxygen-containing acceptor molecules OA and even subtle changes induced by substituents can tweak the n→σ∗(X-I) charge transfer character, which is the second important factor determining the I⋯O bond strength. In addition, the presence of the second halogen bond with atom X of the donor X-I bond in crystals can substantially weaken the target I⋯O halogen bond. In summary, this study performing the in situ measurement of halogen bonding strength in crystalline structures demonstrates the vast potential of the periodic local vibrational mode theory for characterizing and understanding non-covalent interactions in materials.
Collapse
Affiliation(s)
- Yunwen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
| | - Yue Qiu
- Grimwade Centre for Cultural Materials Conservation, School of Historical and Philosophical Studies, Faculty of Arts, University of Melbourne, Parkville, VIC 3052, Australia;
| | - Wenli Zou
- Institute of Modern Physics, Northwest University, and Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi’an 710127, China;
| | - Sadisha Nanayakkara
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
| | - Seth Yannacone
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA; (Y.T.); (S.N.); (S.Y.)
- Correspondence:
| |
Collapse
|
31
|
Kraka E, Freindorf M. Characterizing the Metal–Ligand Bond Strength via Vibrational Spectroscopy: The Metal–Ligand Electronic Parameter (MLEP). TOP ORGANOMETAL CHEM 2020. [DOI: 10.1007/3418_2020_48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Oliveira VP, Marcial BL, Machado FBC, Kraka E. Metal-Halogen Bonding Seen through the Eyes of Vibrational Spectroscopy. MATERIALS 2019; 13:ma13010055. [PMID: 31861904 PMCID: PMC6982077 DOI: 10.3390/ma13010055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 12/09/2019] [Accepted: 12/15/2019] [Indexed: 11/17/2022]
Abstract
Incorporation of a metal center into halogen-bonded materials can efficiently fine-tune the strength of the halogen bonds and introduce new electronic functionalities. The metal atom can adopt two possible roles: serving as halogen acceptor or polarizing the halogen donor and acceptor groups. We investigated both scenarios for 23 metal–halogen dimers trans-M(Y2)(NC5H4X-3)2 with M = Pd(II), Pt(II); Y = F, Cl, Br; X = Cl, Br, I; and NC5H4X-3 = 3-halopyridine. As a new tool for the quantitative assessment of metal–halogen bonding, we introduced our local vibrational mode analysis, complemented by energy and electron density analyses and electrostatic potential studies at the density functional theory (DFT) and coupled-cluster single, double, and perturbative triple excitations (CCSD(T)) levels of theory. We could for the first time quantify the various attractive contacts and their contribution to the dimer stability and clarify the special role of halogen bonding in these systems. The largest contribution to the stability of the dimers is either due to halogen bonding or nonspecific interactions. Hydrogen bonding plays only a secondary role. The metal can only act as halogen acceptor when the monomer adopts a (quasi-)planar geometry. The best strategy to accomplish this is to substitute the halo-pyridine ring with a halo-diazole ring, which considerably strengthens halogen bonding. Our findings based on the local mode analysis provide a solid platform for fine-tuning of existing and for design of new metal–halogen-bonded materials.
Collapse
Affiliation(s)
- Vytor P. Oliveira
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Bruna L. Marcial
- Núcleo de Química, Instituto Federal Goiano (IF Goiano), Campus Morrinhos, 75650-000 Goiás, Brazil;
| | - Francisco B. C. Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), São José dos Campos, 12228-900 São Paulo, Brazil; (V.P.O.); (F.B.C.M.)
| | - Elfi Kraka
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA
- Correspondence: ; Tel.: +1-214-768-2611
| |
Collapse
|
33
|
Lyu S, Beiranvand N, Freindorf M, Kraka E. Interplay of Ring Puckering and Hydrogen Bonding in Deoxyribonucleosides. J Phys Chem A 2019; 123:7087-7103. [PMID: 31323178 DOI: 10.1021/acs.jpca.9b05452] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Cremer-Pople ring puckering analysis and the Konkoli-Cremer local mode analysis supported by the topological analysis of the electron density were applied for the first comprehensive analysis of the interplay between deoxyribose ring puckering and intramolecular H-bonding in 2'-deoxycytidine, 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxyguanosine. We mapped for each deoxyribonucleoside the complete conformational energy surface and the corresponding pseudorotation path. We found only incomplete pseudorotation cycles, caused by ring inversion, which we coined as pseudolibration paths. On each pseudolibration path a global and a local minimum separated by a transition state were identified. The investigation of H-bond free deoxyribonucleoside analogs revealed that removal of the H-bond does not restore the full conformational flexibility of the sugar ring. Our work showed that ring puckering predominantly determines the conformational energy; the larger the puckering amplitude, the lower the conformational energy. In contrast no direct correlation between conformational energy and H-bond strength was found. The longest and weakest H-bonds are located in the local minimum region, whereas the shortest and strongest H-bonds are located outside the global and local minimum regions at the turning points of the pseudolibration paths, i.e., H-bonding determines the shape and length of the pseudolibration paths. In addition to the H-bond strength, we evaluated the covalent/electrostatic character of the H-bonds applying the Cremer-Kraka criterion of covalent bonding. H-bonding in the puric bases has a more covalent character whereas in the pyrimidic bases the H-bond character is more electrostatic. We investigated how the mutual orientation of the CH2OH group and the base influences H-bond formation via two geometrical parameters describing the rotation of the substituents perpendicular to the sugar ring and their tilting relative to the ring center. According to our results, rotation is more important for H-bond formation. In addition we assessed the influence of the H-bond acceptor, the lone pair (N, respectively O), via the delocalization energy. We found larger delocalization energies corresponding to stronger H-bonds for the puric bases. The global minimum conformation of 2'-deoxyguanosine has the strongest H-bond of all conformers investigated in this work with a bond strength of 0.436 which is even stronger than the H-bond in the water dimer (0.360). The application of our new analysis to DNA deoxyribonucleotides and to unnatural base pairs, which have recently drawn a lot of attention, is in progress.
Collapse
Affiliation(s)
- Siying Lyu
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Nassim Beiranvand
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry , Southern Methodist University , 3215 Daniel Ave , Dallas , Texas 75275-0314 , United States
| |
Collapse
|
34
|
Sethio D, Daku LML, Hagemann H, Kraka E. Quantitative Assessment of B-B-B, B-H b -B, and B-H t Bonds: From BH 3 to B 12 H 12 2. Chemphyschem 2019; 20:1967-1977. [PMID: 31063616 DOI: 10.1002/cphc.201900364] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/06/2019] [Indexed: 12/28/2022]
Abstract
We report the thermodynamic stabilities and the intrinsic strengths of three-center-two-electron B-B-B and B-Hb -B bonds ( H b : bridging hydrogen), and two-center-two-electron B-Ht bonds ( H t : terminal hydrogen) which can be served as a new, effective tool to determine the decisive role of the intermediates of hydrogenation/dehydrogenation reactions of borohydride. The calculated heats of formation were obtained with the G4 composite method and the intrinsic strengths of B-B-B, B-Hb -B, and B-Ht bonds were derived from local stretching force constants obtained at the B3LYP-D2/cc-pVTZ level of theory for 21 boron-hydrogen compounds, including 19 intermediates. The Quantum Theory of Atoms in Molecules (QTAIM) was used to deepen the inside into the nature of B-B-B, B-Hb -B, and B-Ht bonds. We found that all of the experimentally identified intermediates hindering the reversibility of the decomposition reactions are thermodynamically stable and possess strong B-B-B, B-Hb -B, and B-Ht bonds. This proves that thermodynamic data and intrinsic B-B-B, B-Hb -B, and B-Ht bond strengths form a new, effective tool to characterize new (potential) intermediates and to predict their role for the reversibility of the hydrogenation/dehydrogenation reactions.
Collapse
Affiliation(s)
- Daniel Sethio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas, 75275-0314, United States
| | - Latévi Max Lawson Daku
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Hans Hagemann
- Department of Physical Chemistry, University of Geneva, 30 Quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas, 75275-0314, United States
| |
Collapse
|
35
|
New insights into Fe–H$$_{2}$$ and Fe–H$$^{-}$$ bonding of a [NiFe] hydrogenase mimic: a local vibrational mode study. Theor Chem Acc 2019. [DOI: 10.1007/s00214-019-2463-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
36
|
Abstract
The intrinsic bonding nature of λ 3 -iodanes was investigated to determine where its hypervalent bonds fit along the spectrum between halogen bonding and covalent bonding. Density functional theory with an augmented Dunning valence triple zeta basis set ( ω B97X-D/aug-cc-pVTZ) coupled with vibrational spectroscopy was utilized to study a diverse set of 34 hypervalent iodine compounds. This level of theory was rationalized by comparing computational and experimental data for a small set of closely-related and well-studied iodine molecules and by a comparison with CCSD(T)/aug-cc-pVTZ results for a subset of the investigated iodine compounds. Axial bonds in λ 3 -iodanes fit between the three-center four-electron bond, as observed for the trihalide species IF 2 − and the covalent FI molecule. The equatorial bonds in λ 3 -iodanes are of a covalent nature. We explored how the equatorial ligand and axial substituents affect the chemical properties of λ 3 -iodanes by analyzing natural bond orbital charges, local vibrational modes, the covalent/electrostatic character, and the three-center four-electron bonding character. In summary, our results show for the first time that there is a smooth transition between halogen bonding → 3c–4e bonding in trihalides → 3c–4e bonding in hypervalent iodine compounds → covalent bonding, opening a manifold of new avenues for the design of hypervalent iodine compounds with specific properties.
Collapse
|
37
|
Correlation between molecular acidity (pKa) and vibrational spectroscopy. J Mol Model 2019; 25:48. [DOI: 10.1007/s00894-019-3928-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/03/2019] [Indexed: 12/17/2022]
|
38
|
Affiliation(s)
- Susy Lopes
- CQC, Department of Chemistry, University of Coimbra Coimbra, Portugal
| | - Rui Fausto
- CQC, Department of Chemistry, University of Coimbra Coimbra, Portugal
| | | |
Collapse
|
39
|
Sethio D, Oliveira V, Kraka E. Quantitative Assessment of Tetrel Bonding Utilizing Vibrational Spectroscopy. Molecules 2018; 23:E2763. [PMID: 30366391 PMCID: PMC6278569 DOI: 10.3390/molecules23112763] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 01/15/2023] Open
Abstract
A set of 35 representative neutral and charged tetrel complexes was investigated with the objective of finding the factors that influence the strength of tetrel bonding involving single bonded C, Si, and Ge donors and double bonded C or Si donors. For the first time, we introduced an intrinsic bond strength measure for tetrel bonding, derived from calculated vibrational spectroscopy data obtained at the CCSD(T)/aug-cc-pVTZ level of theory and used this measure to rationalize and order the tetrel bonds. Our study revealed that the strength of tetrel bonds is affected by several factors, such as the magnitude of the σ-hole in the tetrel atom, the negative electrostatic potential at the lone pair of the tetrel-acceptor, the positive charge at the peripheral hydrogen of the tetrel-donor, the exchange-repulsion between the lone pair orbitals of the peripheral atoms of the tetrel-donor and the heteroatom of the tetrel-acceptor, and the stabilization brought about by electron delocalization. Thus, focusing on just one or two of these factors, in particular, the σ-hole description can only lead to an incomplete picture. Tetrel bonding covers a range of -1.4 to -26 kcal/mol, which can be strengthened by substituting the peripheral ligands with electron-withdrawing substituents and by positively charged tetrel-donors or negatively charged tetrel-acceptors.
Collapse
Affiliation(s)
- Daniel Sethio
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| | - Vytor Oliveira
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA.
| |
Collapse
|
40
|
Freindorf M, Tao Y, Sethio D, Cremer D, Kraka E. New mechanistic insights into the Claisen rearrangement of chorismate – a Unified Reaction Valley Approach study. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1530464] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Yunwen Tao
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Daniel Sethio
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
41
|
Setiawan D, Sethio D, Cremer D, Kraka E. From strong to weak NF bonds: on the design of a new class of fluorinating agents. Phys Chem Chem Phys 2018; 20:23913-23927. [PMID: 30206587 DOI: 10.1039/c8cp03843k] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A set of 50 molecules with NF bonds was investigated to determine the factors that influence the strength of a NF bond, with the aim of designing a new class of fluorinating agents. The intrinsic bond strength of the NF bonds was used as bond strength measure, derived from local stretching NF force constants obtained at the CCSD(T)/aug-cc-pVTZ and ωB97XD/aug-cc-pVTZ levels of theory. The investigation showed that the NF bond is a tunable covalent bond, with bond strength orders ranging from 2.5 (very strong) to 0.1 (very weak). NF bond strengthening is caused by a combination of different factors and can be achieved by e.g. ionization. Whereas, the NF bond weakening can be achieved by hypervalency on the N atom, using a N→Ch (Ch: O, S, Se) donor-acceptor type bond with different electron-withdrawing groups. These new insights into the nature of the NF bond were used to propose and design a new class of fluorinating agents. Hypervalent amine-chalcogenides turned out as most promising candidates for efficient electrophilic fluorinating agents.
Collapse
Affiliation(s)
- Dani Setiawan
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | |
Collapse
|
42
|
Lopes S, Fausto R, Khriachtchev L. Formic acid dimers in a nitrogen matrix. J Chem Phys 2018; 148:034301. [PMID: 29352788 DOI: 10.1063/1.5010417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Formic acid (HCOOH) dimers are studied by infrared spectroscopy in a nitrogen matrix and by ab initio calculations. We benefit from the use of a nitrogen matrix where the lifetime of the higher-energy (cis) conformer is very long (∼11 h vs. 7 min in an argon matrix). As a result, in a nitrogen matrix, a large proportion of the cis conformer can be produced by vibrational excitation of the lower-energy (trans) conformer. Three trans-trans, four trans-cis, and three cis-cis dimers are found in the experiments. The spectroscopic information on most of these dimers is enriched compared to the previous studies in an argon matrix. The cis-cis dimers of ordinary formic acid (without deuteration) are reported here for the first time. Several conformational processes are obtained using selective excitation by infrared light, some of them also for the first time. In particular, we report on the formation of cis-cis dimers upon vibrational excitation of trans-cis dimers. Tunneling decays of several dimers have been detected in the dark. The tunneling decay of cis-cis dimers of formic acid as well as the stabilization of cis units in cis-cis dimers is also observed for the first time.
Collapse
Affiliation(s)
- Susy Lopes
- Department of Chemistry, University of Coimbra, Rua Larga, P-3004-535 Coimbra, Portugal
| | - Rui Fausto
- Department of Chemistry, University of Coimbra, Rua Larga, P-3004-535 Coimbra, Portugal
| | - Leonid Khriachtchev
- Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 Helsinki, Finland
| |
Collapse
|
43
|
|
44
|
Freindorf M, Cremer D, Kraka E. Gold(I)-assisted catalysis – a comprehensive view on the [3,3]-sigmatropic rearrangement of allyl acetate. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1382735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Marek Freindorf
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, Dallas, TX, USA
| |
Collapse
|
45
|
Oliveira V, Cremer D, Kraka E. The Many Facets of Chalcogen Bonding: Described by Vibrational Spectroscopy. J Phys Chem A 2017; 121:6845-6862. [PMID: 28782954 DOI: 10.1021/acs.jpca.7b06479] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A diverse set of 100 chalcogen-bonded complexes comprising neutral, cationic, anionic, divalent, and double bonded chalcogens has been investigated using ωB97X-D/aug-cc-pVTZ to determine geometries, binding energies, electron and energy density distributions, difference density distributions, vibrational frequencies, local stretching force constants, and associated bond strength orders. The accuracy of ωB97X-D was accessed by CCSD(T)/aug-cc-pVTZ calculations of a subset of 12 complexes and by the CCSD(T)/aug-cc-pVTZ //ωB97X-D binding energies of 95 complexes. Most of the weak chalcogen bonds can be rationalized on the basis of electrostatic contributions, but as the bond becomes stronger, covalent contributions can assume a primary role in the strength and geometry of the complexes. Covalency in chalcogen bonds involves the charge transfer from a lone pair orbital of a Lewis base into the σ* orbital of a divalent chalcogen or a π* orbital of a double bonded chalcogen. We describe for the first time a symmetric chalcogen-bonded homodimer stabilized by a charge transfer from a lone pair orbital into a π* orbital. New polymeric materials based on chalcogen bonds should take advantage of the extra stabilization granted by multiple chalcogen bonds, as is shown for 1,2,5-telluradiazole dimers.
Collapse
Affiliation(s)
- Vytor Oliveira
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Ave, Dallas, Texas 75275-0314, United States
| |
Collapse
|
46
|
Cremer D, Kraka E. Generalization of the Tolman electronic parameter: the metal–ligand electronic parameter and the intrinsic strength of the metal–ligand bond. Dalton Trans 2017; 46:8323-8338. [DOI: 10.1039/c7dt00178a] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The MLEP is a new, generally applicable measure of the metal–ligand bond strength based on vibrational spectroscopy, replacing the TEP.
Collapse
Affiliation(s)
- Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO)
- Department of Chemistry
- Southern Methodist University
- Dallas
- USA
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO)
- Department of Chemistry
- Southern Methodist University
- Dallas
- USA
| |
Collapse
|
47
|
Oliveira V, Kraka E, Cremer D. Quantitative Assessment of Halogen Bonding Utilizing Vibrational Spectroscopy. Inorg Chem 2016; 56:488-502. [PMID: 27966937 DOI: 10.1021/acs.inorgchem.6b02358] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A total of 202 halogen-bonded complexes have been studied using a dual-level approach: ωB97XD/aug-cc-pVTZ was used to determine geometries, natural bond order charges, charge transfer, dipole moments, electron and energy density distributions, vibrational frequencies, local stretching force constants, and relative bond strength orders n. The accuracy of these calculations was checked for a subset of complexes at the CCSD(T)/aug-cc-pVTZ level of theory. Apart from this, all binding energies were verified at the CCSD(T) level. A total of 10 different electronic effects have been identified that contribute to halogen bonding and explain the variation in its intrinsic strength. Strong halogen bonds are found for systems with three-center-four-electron (3c-4e) bonding such as chlorine donors in interaction with substituted phosphines. If halogen bonding is supported by hydrogen bonding, genuine 3c-4e bonding can be realized. Perfluorinated diiodobenzenes form relatively strong halogen bonds with alkylamines as they gain stability due to increased electrostatic interactions.
Collapse
Affiliation(s)
- Vytor Oliveira
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University (SMU) , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University (SMU) , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group, Department of Chemistry, Southern Methodist University (SMU) , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
48
|
Setiawan D, Kalescky R, Kraka E, Cremer D. Direct Measure of Metal–Ligand Bonding Replacing the Tolman Electronic Parameter. Inorg Chem 2016; 55:2332-44. [DOI: 10.1021/acs.inorgchem.5b02711] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dani Setiawan
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Robert Kalescky
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|
49
|
Kraka E, Setiawan D, Cremer D. Re-evaluation of the bond length-bond strength rule: The stronger bond is not always the shorter bond. J Comput Chem 2015; 37:130-42. [PMID: 26515027 DOI: 10.1002/jcc.24207] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/09/2015] [Accepted: 08/12/2015] [Indexed: 01/03/2023]
Abstract
A set of 42 molecules with N-F, O-F, N-Cl, P-F, and As-F bonds has been investigated in the search for potential bond anomalies, which lead to reverse bond length-bond strength (BLBS) relationships. The intrinsic strength of each bond investigated has been determined by the local stretching force constant obtained at the CCSD(T)/aug-cc-pVTZ level of theory. N-F or O-F bond anomalies were found for fluoro amine radicals, fluoro amines, and fluoro oxides, respectively. A rationale for the deviation from the normal Badger-type inverse BLBS relation is given and it is shown that electron withdrawal accompanied by strong orbital contraction and bond shortening is one of the prerequisites for a bond anomaly. In the case of short electron-rich bonds such as N-F or O-F, anomeric delocalization of lone pair electrons in connection with lone pair repulsion are decisive whether a bond anomaly can be observed. This is quantitatively assessed with the help of the CCSD(T) local stretching force constants, CCSD(T) charge distributions, and G4 bond dissociation energies. Bond anomalies are not found for fluoro phosphines and fluoro arsines because the bond weakening effects are no longer decisive.
Collapse
Affiliation(s)
- Elfi Kraka
- Department of Chemistry, Computational and Theoretical Chemistry Group (CATCO), Southern Methodist University, 3215 Daniel Ave., Dallas, Texas, 75275-0314
| | - Dani Setiawan
- Department of Chemistry, Computational and Theoretical Chemistry Group (CATCO), Southern Methodist University, 3215 Daniel Ave., Dallas, Texas, 75275-0314
| | - Dieter Cremer
- Department of Chemistry, Computational and Theoretical Chemistry Group (CATCO), Southern Methodist University, 3215 Daniel Ave., Dallas, Texas, 75275-0314
| |
Collapse
|
50
|
Setiawan D, Kraka E, Cremer D. Hidden Bond Anomalies: The Peculiar Case of the Fluorinated Amine Chalcogenides. J Phys Chem A 2015; 119:9541-56. [PMID: 26280987 DOI: 10.1021/acs.jpca.5b05157] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bond anomalies have been investigated for a set of 53 molecules with either N-F, Ti-P, Cr-H, Pb-C, or Pb-F bonds for which reverse rather than inverse bond length-bond strength relationships have been previously claimed. The intrinsic strength of each bond investigated was determined utilizing the associated local stretching force constant obtained at the CCSD(T)/aug-cc-pVTZ level of theory. For the metal containing molecules, LC-ωPBE calculations with the aug-cc-pVTZ (Cr, Pb) and the 6-31++G(d,p) basis set (Ti) were carried out. For bonds containing a metal atom, any bond anomaly could not be confirmed. Previously reported results were due to ill-defined bond strength descriptors or lacking accuracy. In the case of the fluoro amines, methyl fluoro amines, and the fluoro amine oxides, direct or hidden bond anomalies were detected, which result from two or more opposing electronic effects: a dominant bond shortening effect due to electron withdrawal and a bond weakening due to lone pair repulsion or hybridization defects. Bond anomalies can be disguised by a complex interplay of electronic effects. These hidden bond anomalies could be identified in this work for the fluoro amine chalcogenides.
Collapse
Affiliation(s)
- Dani Setiawan
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Elfi Kraka
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| | - Dieter Cremer
- Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University , 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States
| |
Collapse
|