1
|
Qiao YP, Ren CL, Ma YQ. Two Different Ways of Stress Release in Supercoiled DNA Minicircles under DNA Nick. J Phys Chem B 2023; 127:4015-4021. [PMID: 37126597 DOI: 10.1021/acs.jpcb.2c08618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is generally believed that DNA nick is an effective way to release stress in supercoiled DNA, resulting from the twisting motion that individual strands rotate around the axis of the DNA helix. Here, we use MD simulations based on the oxDNA model to investigate the relaxation of 336 bp supercoiled minicircular DNA under DNA nick. Our simulations show that stress release, characterized by the abrupt decrease in linking number, may be induced by two types of DNA motion depending on the nick position. Except for the twisting motion, there is a writhing motion, that is, double strands collectively rotating with one plectoneme removal, which may occur in the process of DNA relaxation with the nick position in the loop region. Moreover, the writhing motion is more likely to occur in the DNA with relatively high hardness, such as C-G pairs. Our simulation results uncover the relationship between structural transformation, stress release, and DNA motion during the dynamic process under DNA nick, indicating the influence of nick position on the relaxation of the supercoiled DNA.
Collapse
Affiliation(s)
- Ye-Peng Qiao
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chun-Lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yu-Qiang Ma
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
2
|
Atitey K. DEGBOE: Discrete time Evolution modeling of Gene mutation through Bayesian inference using qualitative Observation of mutation Events. J Biomed Inform 2022; 134:104197. [PMID: 36084801 PMCID: PMC9809132 DOI: 10.1016/j.jbi.2022.104197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 01/05/2023]
Abstract
An important aspect of cancer progression concerns the way in which gene mutations accumulate in cellular lineages. Comprehensive efforts into cataloging cancer genes have revealed that tumors demonstrate variability in genes that accumulate mutations which depend on the presence or absence of other mutations. However, understanding the stochastic process by which mutations arise across the genome is an important open problem of this nature in biology due to modeling discrete variate time-series is the most challenging, and, as yet, least well-developed of all areas of research in time-series. In this paper, a DEGBOE framework is proposed to model the mutation time-series given the sequence data of the gene mutations. The method relates the discrete-time, nonlinear and nonstationary series of gene mutations to the time-varying autoregressive moving average model. It presents the observation as a nonlinear function dependent on two variables: gene mutation, and gene-gene interactions characterizing the effects of the varying presence or absence of other gene mutations on a mutations' occurrence and evolution. DEGBOE is applied to model the dynamics of frequently mutated genes in lung cancer, includingEGFR,KRAS, and TP53. The results of the model are analyzed and compared to the original simulated data of theDNAwalk, and experimental lung cancer mutations data. It identifies the driver role of TP53 mutations in lung cancer progression.
Collapse
Affiliation(s)
- Komlan Atitey
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, NC 27709, United States.
| |
Collapse
|
3
|
van den Berg MP, Scamman WC, Stubbs JM. Monte Carlo molecular simulation of solution and surface-bound DNA hybridization of short oligomers at varying surface densities. Biophys Chem 2022; 284:106784. [DOI: 10.1016/j.bpc.2022.106784] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/11/2022] [Accepted: 02/19/2022] [Indexed: 11/27/2022]
|
4
|
KOH HEEYUEN, LEE JAEGYUNG, LEE JAEYOUNG, KIM RYAN, TABATA OSAMU, JIN-WOO KIM, KIM DONYUN. Design Approaches and Computational Tools for DNA Nanostructures. IEEE OPEN JOURNAL OF NANOTECHNOLOGY 2021; 2:86-100. [PMID: 35756857 PMCID: PMC9232119 DOI: 10.1109/ojnano.2021.3119913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Designing a structure in nanoscale with desired shape and properties has been enabled by structural DNA nanotechnology. Design strategies in this research field have evolved to interpret various aspects of increasingly more complex nanoscale assembly and to realize molecular-level functionality by exploring static to dynamic characteristics of the target structure. Computational tools have naturally been of significant interest as they are essential to achieve a fine control over both shape and physicochemical properties of the structure. Here, we review the basic design principles of structural DNA nanotechnology together with its computational analysis and design tools.
Collapse
Affiliation(s)
- HEEYUEN KOH
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - JAE GYUNG LEE
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - JAE YOUNG LEE
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
| | - RYAN KIM
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138 USA
- Bio/Nano Technology Group, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701 USA
| | - OSAMU TABATA
- Faculty of Engineering, Kyoto University of Advanced Science, Kyoto 621-8555, Japan
| | - KIM JIN-WOO
- Bio/Nano Technology Group, Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, AR 72701 USA
- Department of Biological and Agricultural Engineering, University of Arkansas, Fayetteville, AR 72701 USA
- Materials Science and Engineering Program, University of Arkansas, Fayetteville, AR 72701 USA
| | - DO-NYUN KIM
- Institute of Advanced Machines and Design, Seoul National University, Seoul 08826, Republic of Korea
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
5
|
Plesa T, Stan GB, Ouldridge TE, Bae W. Quasi-robust control of biochemical reaction networks via stochastic morphing. J R Soc Interface 2021; 18:20200985. [PMID: 33849334 PMCID: PMC8086924 DOI: 10.1098/rsif.2020.0985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/18/2021] [Indexed: 01/09/2023] Open
Abstract
One of the main objectives of synthetic biology is the development of molecular controllers that can manipulate the dynamics of a given biochemical network that is at most partially known. When integrated into smaller compartments, such as living or synthetic cells, controllers have to be calibrated to factor in the intrinsic noise. In this context, biochemical controllers put forward in the literature have focused on manipulating the mean (first moment) and reducing the variance (second moment) of the target molecular species. However, many critical biochemical processes are realized via higher-order moments, particularly the number and configuration of the probability distribution modes (maxima). To bridge the gap, we put forward the stochastic morpher controller that can, under suitable timescale separations, morph the probability distribution of the target molecular species into a predefined form. The morphing can be performed at a lower-resolution, allowing one to achieve desired multi-modality/multi-stability, and at a higher-resolution, allowing one to achieve arbitrary probability distributions. Properties of the controller, such as robustness and convergence, are rigorously established, and demonstrated on various examples. Also proposed is a blueprint for an experimental implementation of stochastic morpher.
Collapse
Affiliation(s)
- Tomislav Plesa
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Guy-Bart Stan
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Thomas E. Ouldridge
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Wooli Bae
- Department of Bioengineering, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| |
Collapse
|
6
|
Haley NEC, Ouldridge TE, Mullor Ruiz I, Geraldini A, Louis AA, Bath J, Turberfield AJ. Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nat Commun 2020; 11:2562. [PMID: 32444600 PMCID: PMC7244503 DOI: 10.1038/s41467-020-16353-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 04/15/2020] [Indexed: 11/09/2022] Open
Abstract
Recent years have seen great advances in the development of synthetic self-assembling molecular systems. Designing out-of-equilibrium architectures, however, requires a more subtle control over the thermodynamics and kinetics of reactions. We propose a mechanism for enhancing the thermodynamic drive of DNA strand-displacement reactions whilst barely perturbing forward reaction rates: the introduction of mismatches within the initial duplex. Through a combination of experiment and simulation, we demonstrate that displacement rates are strongly sensitive to mismatch location and can be tuned by rational design. By placing mismatches away from duplex ends, the thermodynamic drive for a strand-displacement reaction can be varied without significantly affecting the forward reaction rate. This hidden thermodynamic driving motif is ideal for the engineering of non-equilibrium systems that rely on catalytic control and must be robust to leak reactions.
Collapse
Affiliation(s)
- Natalie E C Haley
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Thomas E Ouldridge
- Imperial College Centre for Synthetic Biology and Department of Bioengineering, Prince Consort Road, Imperial College London, London, SW7 2AZ, UK.
| | - Ismael Mullor Ruiz
- Imperial College Centre for Synthetic Biology and Department of Bioengineering, Prince Consort Road, Imperial College London, London, SW7 2AZ, UK
| | - Alessandro Geraldini
- Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3NP, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3NP, UK
| | - Jonathan Bath
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Andrew J Turberfield
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK.
| |
Collapse
|
7
|
Abstract
Living cells communicate information about physiological conditions by producing signaling molecules in a specific timed manner. Different conditions can result in the same total amount of a signaling molecule, differing only in the pattern of the molecular concentration over time. Such temporally coded information can be completely invisible to even state-of-the-art molecular sensors with high chemical specificity that respond only to the total amount of the signaling molecule. Here, we demonstrate design principles for circuits with temporal specificity, that is, molecular circuits that respond to specific temporal patterns in a molecular concentration. We consider pulsatile patterns in a molecular concentration characterized by three fundamental temporal features: time period, duty fraction, and number of pulses. We develop circuits that respond to each one of these features while being insensitive to the others. We demonstrate our design principles using general chemical reaction networks and with explicit simulations of DNA strand displacement reactions. In this way, our work develops building blocks for temporal pattern recognition through molecular computation.
Collapse
Affiliation(s)
- Jackson O’Brien
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| | - Arvind Murugan
- The James Franck Institute and Department of Physics, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
8
|
Sieradzan AK, Golon Ł, Liwo A. Prediction of DNA and RNA structure with the NARES-2P force field and conformational space annealing. Phys Chem Chem Phys 2018; 20:19656-19663. [PMID: 30014063 DOI: 10.1039/c8cp03018a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A physics-based method for the prediction of the structures of nucleic acids, which is based on the physics-based 2-bead NARES-2P model of polynucleotides and global-optimization Conformational Space Annealing (CSA) algorithm has been proposed. The target structure is sought as the global-energy-minimum structure, which ignores the entropy component of the free energy but spares expensive multicanonical simulations necessary to find the conformational ensemble with the lowest free energy. The CSA algorithm has been modified to optimize its performance when treating both single and multi-chain nucleic acids. It was shown that the method finds the native fold for simple RNA molecules and DNA duplexes and with limited distance restraints, which can easily be obtained from the secondary-structure-prediction servers, complex RNA folds can be treated with using moderate computer resources.
Collapse
Affiliation(s)
- Adam K Sieradzan
- Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland.
| | | | | |
Collapse
|
9
|
Shi Z, Castro CE, Arya G. Conformational Dynamics of Mechanically Compliant DNA Nanostructures from Coarse-Grained Molecular Dynamics Simulations. ACS NANO 2017; 11:4617-4630. [PMID: 28423273 DOI: 10.1021/acsnano.7b00242] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Structural DNA nanotechnology, the assembly of rigid 3D structures of complex yet precise geometries, has recently been used to design dynamic, mechanically compliant nanostructures with tunable equilibrium conformations and conformational distributions. Here we use coarse-grained molecular dynamics simulations to provide insights into the conformational dynamics of a set of mechanically compliant DNA nanostructures-DNA hinges that use single-stranded DNA "springs" to tune the equilibrium conformation of a layered double-stranded DNA "joint" connecting two stiff "arms" constructed from DNA helix bundles. The simulations reproduce the experimentally measured equilibrium angles between hinge arms for a range of hinge designs. The hinges are found to be structurally stable, except for some fraying of the open ends of the DNA helices comprising the hinge arms and some loss of base-pairing interactions in the joint regions coinciding with the crossover junctions, especially in hinges designed to exhibit a small bending angle that exhibit large local stresses resulting in strong kinks in their joints. Principal component analysis reveals that while the hinge dynamics are dominated by bending motion, some twisting and sliding of hinge arms relative to each other also exists. Forced deformation of the hinges reveals distinct bending mechanisms for hinges with short, inextensible springs versus those with longer, more extensible springs. Lastly, we introduce an approach for rapidly predicting equilibrium hinge angles from individual force-deformation behaviors of its single- and double-stranded DNA components. Taken together, these results demonstrate that coarse-grained modeling is a promising approach for designing, predicting, and studying the dynamics of compliant DNA nanostructures, where conformational fluctuations become important, multiple deformation mechanisms exist, and continuum approaches may not yield accurate properties.
Collapse
Affiliation(s)
- Ze Shi
- Department of NanoEngineering, University of California, San Diego , La Jolla, California 92093, United States
| | - Carlos E Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University , Columbus, Ohio 43210, United States
| | - Gaurav Arya
- Department of NanoEngineering, University of California, San Diego , La Jolla, California 92093, United States
| |
Collapse
|
10
|
Joshi H, Kaushik A, Seeman NC, Maiti PK. Nanoscale Structure and Elasticity of Pillared DNA Nanotubes. ACS NANO 2016; 10:7780-91. [PMID: 27400249 DOI: 10.1021/acsnano.6b03360] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We present an atomistic model of pillared DNA nanotubes (DNTs) and their elastic properties which will facilitate further studies of these nanotubes in several important nanotechnological and biological applications. In particular, we introduce a computational design to create an atomistic model of a 6-helix DNT (6HB) along with its two variants, 6HB flanked symmetrically with two double helical DNA pillars (6HB+2) and 6HB flanked symmetrically by three double helical DNA pillars (6HB+3). Analysis of 200 ns all-atom simulation trajectories in the presence of explicit water and ions shows that these structures are stable and well behaved in all three geometries. Hydrogen bonding is well maintained for all variants of 6HB DNTs. From the equilibrium bending angle distribution, we calculate the persistence lengths of these tubes. The measured persistence lengths of these nanotubes are ∼10 μm, which is 2 orders of magnitude larger than that of dsDNA. We also find a gradual increase of persistence length with an increasing number of pillars, in quantitative agreement with previous experimental findings. To have a quantitative understanding of the stretch modulus of these tubes, we carried out nonequilibrium steered molecular dynamics (SMD). The linear part of the force-extension plot gives a stretch modulus in the range 6500 pN for 6HB without pillars, which increases to 11 000 pN for tubes with three pillars. The values of the stretch modulus calculated using contour length distribution obtained from equilibrium MD simulations are similar to those obtained from nonequilibrium SMD simulations. The addition of pillars makes these DNTs very rigid.
Collapse
Affiliation(s)
- Himanshu Joshi
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| | - Atul Kaushik
- Department of Biotechnology, Indian Institute of Technology Madras , Chennai 600 036, India
| | - Nadrian C Seeman
- Department of Chemistry, New York University , New York, New York 10003, United States
| | - Prabal K Maiti
- Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science , Bangalore 560012, India
| |
Collapse
|
11
|
Dans PD, Walther J, Gómez H, Orozco M. Multiscale simulation of DNA. Curr Opin Struct Biol 2016; 37:29-45. [DOI: 10.1016/j.sbi.2015.11.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 01/05/2023]
|
12
|
Jacobs WM, Frenkel D. Self-Assembly of Structures with Addressable Complexity. J Am Chem Soc 2016; 138:2457-67. [DOI: 10.1021/jacs.5b11918] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- William M. Jacobs
- Department
of Chemistry and Chemical Biology, Harvard University, 12 Oxford
Street, Cambridge, Massachusetts 02138, United States
| | - Daan Frenkel
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
13
|
Softley T. Announcement of the winner of the Longuet-Higgins Early Career Researcher Prize 2014. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1082702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Naômé A, Laaksonen A, Vercauteren DP. A Coarse-Grained Simulation Study of the Structures, Energetics, and Dynamics of Linear and Circular DNA with Its Ions. J Chem Theory Comput 2015; 11:2813-26. [DOI: 10.1021/acs.jctc.5b00113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aymeric Naômé
- Laboratoire
de Physico-Chimie Informatique, Unité de Chimie Physique Théorique
et Structurale, University of Namur, 5000 Namur, Belgium
- Namur Medicine & Drug Innovation Center (NAMEDIC), University of Namur, 5000 Namur, Belgium
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Science for Life
Laboratory, 17121 Solna, Sweden
| | - Aatto Laaksonen
- Division
of Physical Chemistry, Department of Materials and Environmental Chemistry,
Arrhenius Laboratory, Stockholm University, 10691 Stockholm, Sweden
- Science for Life
Laboratory, 17121 Solna, Sweden
- Stellenbosch
Institute of Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, 7600 Stellenbosch, South Africa
| | - Daniel P. Vercauteren
- Laboratoire
de Physico-Chimie Informatique, Unité de Chimie Physique Théorique
et Structurale, University of Namur, 5000 Namur, Belgium
- Namur Medicine & Drug Innovation Center (NAMEDIC), University of Namur, 5000 Namur, Belgium
| |
Collapse
|