1
|
Rey M, Carrington T. Using nested tensor train contracted basis functions with group theoretical techniques to compute (ro)-vibrational spectra of molecules with non-Abelian groups. J Chem Phys 2024; 161:044102. [PMID: 39037133 DOI: 10.1063/5.0219434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024] Open
Abstract
In this paper, we use nested tensor-train contractions to compute vibrational and ro-vibrational energy levels of molecules with five and six atoms. At each step, we fully exploit symmetry by using symmetry adapted basis functions obtained from an irreducible tensor method. Contracted basis functions are determined by diagonalizing reduced dimensional Hamiltonian matrices. The size of matrices of eigenvectors, used to account for coupling between groups of coordinates, is reduced by discarding rows and columns. The size of the matrices that must be diagonalized is thus substantially reduced, making it possible to use direct eigensolvers, even for molecules with five and six atoms. The symmetry-adapted contracted vibrational basis functions have been used to compute J = 0 energy levels of the CH3CN (C3v) and J > 0 levels of CH4.
Collapse
Affiliation(s)
- Michaël Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687 Reims Cedex 2, France
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
2
|
Manzhos S, Ihara M. A controlled study of the effect of deviations from symmetry of the potential energy surface (PES) on the accuracy of the vibrational spectrum computed with collocation. J Chem Phys 2023; 159:211103. [PMID: 38038200 DOI: 10.1063/5.0182373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
Symmetry, in particular permutational symmetry, of a potential energy surface (PES) is a useful property in quantum chemical calculations. It facilitates, in particular, state labelling and identification of degenerate states. In many practically important applications, however, these issues are unimportant. The imposition of exact symmetry and the perception that it is necessary create additional methodological requirements narrowing or complicating algorithmic choices that are thereby biased against methods and codes that by default do not incorporate symmetry, including most off-the-shelf machine learning methods that cannot be directly used if exact symmetry is demanded. By introducing symmetric and unsymmetric errors into the PES of H2CO in a controlled way and computing the vibrational spectrum with collocation using symmetric and nonsymmetric collocation point sets, we show that when the deviations from an ideal PES are random, imposition of exact symmetry does not bring any practical advantages. Moreover, a calculation ignoring symmetry may be more accurate. We also compare machine-learned PESs with and without symmetrization and demonstrate that there is no advantage of imposing exact symmetry for the accuracy of the vibrational spectrum.
Collapse
Affiliation(s)
- Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Manabu Ihara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
3
|
Fu B, Zhang DH. Accurate fundamental invariant-neural network representation of ab initio potential energy surfaces. Natl Sci Rev 2023; 10:nwad321. [PMID: 38274241 PMCID: PMC10808953 DOI: 10.1093/nsr/nwad321] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 01/27/2024] Open
Abstract
Highly accurate potential energy surfaces are critically important for chemical reaction dynamics. The large number of degrees of freedom and the intricate symmetry adaption pose a big challenge to accurately representing potential energy surfaces (PESs) for polyatomic reactions. Recently, our group has made substantial progress in this direction by developing the fundamental invariant-neural network (FI-NN) approach. Here, we review these advances, demonstrating that the FI-NN approach can represent highly accurate, global, full-dimensional PESs for reactive systems with even more than 10 atoms. These multi-channel reactions typically involve many intermediates, transition states, and products. The complexity and ruggedness of this potential energy landscape present even greater challenges for full-dimensional PES representation. These PESs exhibit a high level of complexity, molecular size, and accuracy of fit. Dynamics simulations based on these PESs have unveiled intriguing and novel reaction mechanisms, providing deep insights into the intricate dynamics involved in combustion, atmospheric, and organic chemistry.
Collapse
Affiliation(s)
- Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Manzhos S, Ihara M. Neural Network with Optimal Neuron Activation Functions Based on Additive Gaussian Process Regression. J Phys Chem A 2023; 127:7823-7835. [PMID: 37698519 DOI: 10.1021/acs.jpca.3c02949] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Feed-forward neural networks (NNs) are a staple machine learning method widely used in many areas of science and technology, including physical chemistry, computational chemistry, and materials informatics. While even a single-hidden-layer NN is a universal approximator, its expressive power is limited by the use of simple neuron activation functions (such as sigmoid functions) that are typically the same for all neurons. More flexible neuron activation functions would allow the use of fewer neurons and layers and thereby save computational cost and improve expressive power. We show that additive Gaussian process regression (GPR) can be used to construct optimal neuron activation functions that are individual to each neuron. An approach is also introduced that avoids nonlinear fitting of neural network parameters by defining them with rules. The resulting method combines the advantage of robustness of a linear regression with the higher expressive power of an NN. We demonstrate the approach by fitting the potential energy surfaces of the water molecule and formaldehyde. Without requiring any nonlinear optimization, the additive-GPR-based approach outperforms a conventional NN in the high-accuracy regime, where a conventional NN suffers more from overfitting.
Collapse
Affiliation(s)
- Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| | - Manabu Ihara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552, Japan
| |
Collapse
|
5
|
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023; 2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Artificial Neural Networks (NN) are already heavily involved in methods and applications for frequent tasks in the field of computational chemistry such as representation of potential energy surfaces (PES) and spectroscopic predictions. This perspective provides an overview of the foundations of neural network-based full-dimensional potential energy surfaces, their architectures, underlying concepts, their representation and applications to chemical systems. Methods for data generation and training procedures for PES construction are discussed and means for error assessment and refinement through transfer learning are presented. A selection of recent results illustrates the latest improvements regarding accuracy of PES representations and system size limitations in dynamics simulations, but also NN application enabling direct prediction of physical results without dynamics simulations. The aim is to provide an overview for the current state-of-the-art NN approaches in computational chemistry and also to point out the current challenges in enhancing reliability and applicability of NN methods on a larger scale.
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| |
Collapse
|
6
|
Tyuterev V, Tashkun S, Rey M, Nikitin A. High-order contact transformations of molecular Hamiltonians: general approach, fast computational algorithm and convergence of ro-vibrational polyad models. Mol Phys 2022. [DOI: 10.1080/00268976.2022.2096140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Vladimir Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims, Reims, France
- Laboratory of Molecular Quantum Mechanics and Radiative Transfer, Tomsk State University, Tomsk, Russia
| | - Sergey Tashkun
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
| | - Michael Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, Université de Reims, Reims, France
| | - Andrei Nikitin
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
7
|
Rey M. Novel methodology for systematically constructing global effective models from ab initio-based surfaces: A new insight into high-resolution molecular spectra analysis. J Chem Phys 2022; 156:224103. [PMID: 35705402 DOI: 10.1063/5.0089097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper, a novel methodology is presented for the construction of ab initio effective rotation-vibration spectroscopic models from potential energy and dipole moment surfaces. Non-empirical effective Hamiltonians are obtained via the block-diagonalization of selected variationally computed eigenvector matrices. For the first time, the derivation of an effective dipole moment is carried out in a systematic way. This general approach can be implemented quite easily in most of the variational computer codes and turns out to be a clear alternative to the rather involved Van Vleck perturbation method. Symmetry is exploited at all stages to translate first-principles calculations into a set of spectroscopic parameters to be further refined on experiment. We demonstrate on H2CO, PH3, CH4, C2H4, and SF6 that the proposed effective model can provide crucial information to spectroscopists within a very short time compared to empirical spectroscopic models. This approach brings a new insight into high-resolution spectrum analysis of polyatomic molecules and will be also of great help in the modeling of hot atmospheres where completeness is important.
Collapse
Affiliation(s)
- Michael Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687 Reims Cedex 2, France
| |
Collapse
|
8
|
Manzhos S, Ihara M. Computational vibrational spectroscopy of molecule-surface interactions: what is still difficult and what can be done about it. Phys Chem Chem Phys 2022; 24:15158-15172. [DOI: 10.1039/d2cp01389d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Interactions of molecules with solid surfaces are responsible for key functionalities for a range of currently actively pursued technologies, including heterogeneous catalysis for synthesis or decomposition of molecules, sensitization, surface...
Collapse
|
9
|
Kwon HY, Morrow Z, Kelley CT, Jakubikova E. Interpolation Methods for Molecular Potential Energy Surface Construction. J Phys Chem A 2021; 125:9725-9735. [PMID: 34730973 DOI: 10.1021/acs.jpca.1c06812] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The concept of a potential energy surface (PES) is one of the most important concepts in modern chemistry. A PES represents the relationship between the chemical system's energy and its geometry (i.e., atom positions) and can provide useful information about the system's chemical properties and reactivity. Construction of accurate PESs with high-level theoretical methodologies, such as density functional theory, is still challenging due to a steep increase in the computational cost with the increase of the system size. Thus, over the past few decades, many different mathematical approaches have been applied to the problem of the cost-efficient PES construction. This article serves as a short overview of interpolative methods for the PES construction, including global polynomial interpolation, trigonometric interpolation, modified Shepard interpolation, interpolative moving least-squares, and the automated PES construction derived from these.
Collapse
Affiliation(s)
- Hyuk-Yong Kwon
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zachary Morrow
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - C T Kelley
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
10
|
Ndengué S, Quintas-Sánchez E, Dawes R, Osborn D. The Low-Lying Electronic States of NO 2: Potential Energy and Dipole Surfaces, Bound States, and Electronic Absorption Spectrum. J Phys Chem A 2021; 125:5519-5533. [PMID: 34114826 DOI: 10.1021/acs.jpca.1c03482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitrogen dioxide, NO2, is a free radical composed of the two most abundant elements in Earth's atmosphere, nitrogen and oxygen, and is relevant to atmospheric and combustion chemistry. The electronic structure of even its lowest-lying states is remarkably complex, with various conical intersections and Renner-Teller pairings, giving rise to complex and perturbed vibronic states. Here we report some analysis of the 18 molecular states of doublet spin-multiplicity formed by combining ground-state N(4Su) and O(3Pg) atoms. Three-dimensional potential energy surfaces were fit at the MRCI(Q)-F12/VTZ-F12 level, describing the lowest four (X̃, Ã, B̃, and C̃) electronic states. A properties-based diabatization procedure was applied to accommodate the intersections, producing energies in a quasidiabatic representation and yielding couplings that were also fit into surfaces. The low-lying vibrational levels on the ground X̃ state were computed and compared with experimental measurements. Compared to experiment, the lowest 125 calculated vibrational levels (up to 8500 cm-1 above the zero-point energy) have a root-mean-squared error of 16.5 cm-1. In addition, dipole moments for each of the lowest four electronic states-and the transition dipoles between them-were also computed and fit. With the coupled energy and dipole surfaces, the electronic spectrum was calculated in absolute intensity and compared with experimental measurements. Detailed structure in the experimental spectrum was successfully reproduced, and the total integrated intensity matches experiment to an accuracy of ∼1.5% with no empirical adjustments.
Collapse
Affiliation(s)
- Steve Ndengué
- ICTP-East African Institute for Fundamental Research, University of Rwanda, Kigali, Rwanda
| | | | - Richard Dawes
- Missouri University of Science and Technology, Rolla, Missouri 65409-0010, United States
| | - David Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94551, United States.,Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
11
|
Ruiz J, Misa K, Seshappan A, Keçeli M, Sode O. Exploring the anharmonic vibrational structure of carbon dioxide trimers. J Chem Phys 2021; 154:144302. [PMID: 33858169 DOI: 10.1063/5.0039793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our previously developed mbCO2 potential [O. Sode and J. N. Cherry, J. Comput. Chem. 38, 2763 (2017)] is used to describe the vibrational structure of the intermolecular motions of the CO2 trimers: barrel-shaped and cyclic trimers. Anharmonic corrections are accounted for using the vibrational self-consistent field theory, vibrational second-order Møller-Plesset perturbation (VMP2) theory, and vibrational configuration interaction (VCI) methods and compared with experimental observations. For the cyclic structure, we revise the assignments of two previously observed experimental peaks based on our VCI and VMP2 results. We note that the experimental band observed near 13 cm-1 is the out-of-phase out-of-plane degenerate motion with E″ symmetry, while the peak observed at 18 cm-1 likely corresponds to the symmetric out-of-plane torsion A″ vibration. Since the VCI treatment of the vibrational motions accounts for vibrational mixing and delocalization, overtones and combination bands were also observed and quantified in the intermolecular regions of the two trimer isomers.
Collapse
Affiliation(s)
- Jesus Ruiz
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA
| | - Kyle Misa
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA
| | - Arabi Seshappan
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA
| | - Murat Keçeli
- Computational Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Olaseni Sode
- Department of Chemistry and Biochemistry, California State University, Los Angeles, 5151 State University Drive, Los Angeles, California 90032, USA
| |
Collapse
|
12
|
Wang Y, Guan Y, Guo H, Yarkony DR. Enabling complete multichannel nonadiabatic dynamics: A global representation of the two-channel coupled, 1,2 1A and 1 3A states of NH 3 using neural networks. J Chem Phys 2021; 154:094121. [PMID: 33685133 DOI: 10.1063/5.0037684] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Global coupled three-state two-channel potential energy and property/interaction (dipole and spin-orbit coupling) surfaces for the dissociation of NH3(Ã) into NH + H2 and NH2 + H are reported. The permutational invariant polynomial-neural network approach is used to simultaneously fit and diabatize the electronic Hamiltonian by fitting the energies, energy gradients, and derivative couplings of the two coupled lowest-lying singlet states as well as fitting the energy and energy gradients of the lowest-lying triplet state. The key issue in fitting property matrix elements in the diabatic basis is that the diabatic surfaces must be smooth, that is, the diabatization must remove spikes in the original adiabatic property surfaces attributable to the switch of electronic wavefunctions at the conical intersection seam. Here, we employ the fit potential energy matrix to transform properties in the adiabatic representation to a quasi-diabatic representation and remove the discontinuity near the conical intersection seam. The property matrix elements can then be fit with smooth neural network functions. The coupled potential energy surfaces along with the dipole and spin-orbit coupling surfaces will enable more accurate and complete treatment of optical transitions, as well as nonadiabatic internal conversion and intersystem crossing.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Yafu Guan
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
13
|
Quintas-Sánchez E, Dawes R. Spectroscopy and Scattering Studies Using Interpolated Ab Initio Potentials. Annu Rev Phys Chem 2021; 72:399-421. [PMID: 33503385 DOI: 10.1146/annurev-physchem-090519-051837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Born-Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later-despite astonishing advances in computational power-the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (H2O)2, with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations.
Collapse
Affiliation(s)
- Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA;
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA;
| |
Collapse
|
14
|
Manzhos S, Carrington T. Neural Network Potential Energy Surfaces for Small Molecules and Reactions. Chem Rev 2020; 121:10187-10217. [PMID: 33021368 DOI: 10.1021/acs.chemrev.0c00665] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We review progress in neural network (NN)-based methods for the construction of interatomic potentials from discrete samples (such as ab initio energies) for applications in classical and quantum dynamics including reaction dynamics and computational spectroscopy. The main focus is on methods for building molecular potential energy surfaces (PES) in internal coordinates that explicitly include all many-body contributions, even though some of the methods we review limit the degree of coupling, due either to a desire to limit computational cost or to limited data. Explicit and direct treatment of all many-body contributions is only practical for sufficiently small molecules, which are therefore our primary focus. This includes small molecules on surfaces. We consider direct, single NN PES fitting as well as more complex methods that impose structure (such as a multibody representation) on the PES function, either through the architecture of one NN or by using multiple NNs. We show how NNs are effective in building representations with low-dimensional functions including dimensionality reduction. We consider NN-based approaches to build PESs in the sums-of-product form important for quantum dynamics, ways to treat symmetry, and issues related to sampling data distributions and the relation between PES errors and errors in observables. We highlight combinations of NNs with other ideas such as permutationally invariant polynomials or sums of environment-dependent atomic contributions, which have recently emerged as powerful tools for building highly accurate PESs for relatively large molecular and reactive systems.
Collapse
Affiliation(s)
- Sergei Manzhos
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650, Boulevard Lionel-Boulet, Varennes, Québec City, Québec J3X 1S2, Canada
| | - Tucker Carrington
- Chemistry Department, Queen's University, Kingston Ontario K7L 3N6, Canada
| |
Collapse
|
15
|
Boussaidi MA, Ren O, Voytsekhovsky D, Manzhos S. Random Sampling High Dimensional Model Representation Gaussian Process Regression (RS-HDMR-GPR) for Multivariate Function Representation: Application to Molecular Potential Energy Surfaces. J Phys Chem A 2020; 124:7598-7607. [DOI: 10.1021/acs.jpca.0c05935] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mohamed Ali Boussaidi
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes QC J3X 1S2, Canada
- Ecole Nationale d’Ingénieurs de Tunis, Rue Béchir Salem Belkhiria Campus universitaire, BP 37, 1002, Le Bélvédère, Tunis, Tunisia
| | - Owen Ren
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes QC J3X 1S2, Canada
- Purefacts Inc., 48 Yonge Street, Suite 400, Toronto, ON M5E 1G6, Canada
| | | | - Sergei Manzhos
- Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes QC J3X 1S2, Canada
| |
Collapse
|
16
|
Williams DMG, Eisfeld W. Complete Nuclear Permutation Inversion Invariant Artificial Neural Network (CNPI-ANN) Diabatization for the Accurate Treatment of Vibronic Coupling Problems. J Phys Chem A 2020; 124:7608-7621. [DOI: 10.1021/acs.jpca.0c05991] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- David M. G. Williams
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
17
|
Manzhos S. Machine learning for the solution of the Schrödinger equation. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab7d30] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Zeng HJ, Yang N, Johnson MA. Introductory lecture: advances in ion spectroscopy: from astrophysics to biology. Faraday Discuss 2019; 217:8-33. [PMID: 31094388 DOI: 10.1039/c9fd00030e] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This introduction provides a historical context for the development of ion spectroscopy over the past half century by following the evolution of experimental methods to the present state-of-the-art. Rather than attempt a comprehensive review, we focus on how early work on small ions, carried out with fluorescence, direct absorption, and photoelectron spectroscopy, evolved into powerful technologies that can now address complex chemical problems ranging from catalysis to biophysics. One of these developments is the incorporation of cooling and temperature control to enable the general application of "messenger tagging" vibrational spectroscopy, first carried out using ionized supersonic jets and then with buffer gas cooling in radiofrequency ion traps. Some key advances in the application of time-resolved pump-probe techniques to follow ultrafast dynamics are also discussed, as are significant benchmarks in the refinement of ion mobility to allow spectroscopic investigation of large biopolymers with well-defined shapes. We close with a few remarks on challenges and opportunities to explore molecular level mechanics that drive macroscopic behavior.
Collapse
Affiliation(s)
- Helen J Zeng
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Nan Yang
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| | - Mark A Johnson
- Sterling Chemistry Laboratory, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
19
|
Maystrovsky S, Keçeli M, Sode O. Understanding the anharmonic vibrational structure of the carbon dioxide dimer. J Chem Phys 2019; 150:144302. [PMID: 30981225 DOI: 10.1063/1.5089460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Understanding the vibrational structure of the CO2 system is important to confirm the potential energy surface and interactions in such van der Waals complexes. In this work, we use our previously developed mbCO2 potential function to explore the vibrational structure of the CO2 monomer and dimer. The potential function has been trained to reproduce the potential energies at the CCSD(T)-F12b/aug-cc-pVTZ level of electronic structure theory. The harmonic approximation, as well as anharmonic corrections using vibrational structure theories such as vibrational self-consistent field, vibrational second-order Møller-Plesset perturbation, and vibrational configuration interaction (VCI), is applied to address the vibrational motions. We compare the vibrational results using the mbCO2 potential function with traditional electronic structure theory results and to experimental frequencies. The anharmonic results for the monomer most closely match the experimental data to within 3 cm-1, including the Fermi dyad frequencies. The intermolecular and intramolecular dimer frequencies were treated separately and show good agreement with the most recent theoretical and experimental results from the literature. The VCI treatment of the dimer vibrational motions accounts for vibrational mixing and delocalization, such that we observe the dimer Fermi resonance phenomena, both in the intramolecular and intermolecular regions.
Collapse
Affiliation(s)
- Samuel Maystrovsky
- Department of Chemistry, Biochemistry and Physics, The University of Tampa, 401 West Kennedy Boulevard, Tampa, Florida 33606, USA
| | - Murat Keçeli
- Computational Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Olaseni Sode
- Department of Chemistry, Biochemistry and Physics, The University of Tampa, 401 West Kennedy Boulevard, Tampa, Florida 33606, USA
| |
Collapse
|
20
|
Quintas-Sánchez E, Dawes R. AUTOSURF: A Freely Available Program To Construct Potential Energy Surfaces. J Chem Inf Model 2018; 59:262-271. [DOI: 10.1021/acs.jcim.8b00784] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ernesto Quintas-Sánchez
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65401, United States
| |
Collapse
|
21
|
Williams DMG, Eisfeld W. Neural network diabatization: A new ansatz for accurate high-dimensional coupled potential energy surfaces. J Chem Phys 2018; 149:204106. [DOI: 10.1063/1.5053664] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- David M. G. Williams
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
22
|
Dawes R, Quintas‐Sánchez E. THE CONSTRUCTION OF AB INITIO‐BASED POTENTIAL ENERGY SURFACES. REVIEWS IN COMPUTATIONAL CHEMISTRY 2018. [DOI: 10.1002/9781119518068.ch5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Inverse Multiquadratic Functions as the Basis for the Rectangular Collocation Method to Solve the Vibrational Schrödinger Equation. MATHEMATICS 2018. [DOI: 10.3390/math6110253] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We explore the use of inverse multiquadratic (IMQ) functions as basis functions when solving the vibrational Schrödinger equation with the rectangular collocation method. The quality of the vibrational spectrum of formaldehyde (in six dimensions) is compared to that obtained using Gaussian basis functions when using different numbers of width-optimized IMQ functions. The effects of the ratio of the number of collocation points to the number of basis functions and of the choice of the IMQ exponent are studied. We show that the IMQ basis can be used with parameters where the IMQ function is not integrable. We find that the quality of the spectrum with IMQ basis functions is somewhat lower that that with a Gaussian basis when the basis size is large, and for a range of IMQ exponents. The IMQ functions are; however, advantageous when a small number of functions is used or with a small number of collocation points (e.g., when using square collocation).
Collapse
|
24
|
Nikitin AV, Protasevich AE, Rey M, Tyuterev VG. Highly excited vibrational levels of methane up to 10 300 cm -1: Comparative study of variational methods. J Chem Phys 2018; 149:124305. [PMID: 30278662 DOI: 10.1063/1.5042154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this work, we report calculated vibrational energy levels of the methane molecule up to 10 300 cm-1. Two potential energy surfaces constructed in quite different coordinate systems with different analytical representations are employed in order to evaluate the uncertainty of vibrational predictions. To calculate methane energy levels, we used two independent techniques of the variational method. One method uses an exact kinetic energy operator in internal curvilinear coordinates. Another one uses an expansion of Eckart-Watson nuclear motion Hamiltonian in rectilinear normal coordinates. In the Icosad range (up to five vibrational quanta bands-below 7800 cm-1), the RMS standard deviations between calculated and observed energy levels were 0.22 cm-1 and 0.41 cm-1 for these two quite different approaches. For experimentally well-known 3v3 sub-levels, the calculation accuracy is estimated to be ∼1 cm-1. In the Triacontad range (7660-9188 cm-1), the average error of the calculation is about 0.5 cm-1. The accuracy and convergence issues for higher energy ranges are discussed.
Collapse
Affiliation(s)
- Andrei V Nikitin
- V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Akademichesky Avenue, 634055 Tomsk, Russian Federation
| | - Alexander E Protasevich
- V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, 1, Akademichesky Avenue, 634055 Tomsk, Russian Federation
| | - Michael Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| | - Vladimir G Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
25
|
Rey M, Chizhmakova IS, Nikitin AV, Tyuterev VG. Understanding global infrared opacity and hot bands of greenhouse molecules with low vibrational modes from first-principles calculations: the case of CF 4. Phys Chem Chem Phys 2018; 20:21008-21033. [PMID: 30070661 DOI: 10.1039/c8cp03252a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorine containing molecules have a particularly long atmospheric lifetime and their very big estimated global warming potentials are expected to rapidly increase in the future. This work is focused on the global theoretical prediction of infrared spectra of the tetrafluoromethane molecule that is considered as a potentially powerful greenhouse gas having the largest estimated lifetime of over 50 000 years in the atmosphere. The presence of relatively low vibrational frequencies makes the Boltzmann population of the excited levels important. Consequently, the "hot bands" corresponding to transitions among excited rovibrational states contribute significantly to the CF4 opacity in the infrared even at room temperature conditions but the existing laboratory data analyses are not sufficiently complete. In this work, we construct the first accurate and complete ab initio based line lists for CF4 in the range 0-4000 cm-1, containing rovibrational bands that are the most active in absorption. An efficient basis set compression method was applied to predict more than 700 new bands and subbands via variational nuclear motion calculations. We show that already at room temperature a quasi-continuum of overlapping weak lines appears in the CF4 infrared spectra due to the increasing density of bands and transitions. In order to converge the infrared opacity at room temperature, it was necessary to include a high rotational quantum number up to J = 80 resulting in 2 billion rovibrational transitions. In order to make the cross-section simulation faster, we have partitioned our data into two parts: (a) strong & medium line lists with lower energy levels for calculation of selective absorption features that can be used at various temperatures and (b) compressed "super-line" libraries of very weak transitions contributing to the quasi-continuum modelling. Comparisons with raw previously unassigned experimental spectra showed a very good accuracy for integrated absorbance in the entire range of the reported spectra predictions. The data obtained in this work will be made available through the TheoReTS information system (http://theorets.univ-reims.fr, http://theorets.tsu.ru) that contains ab initio born line lists and provides a user-friendly graphical interface for a fast simulation of the CF4 absorption cross-sections and radiance under various temperature conditions from 80 K to 400 K.
Collapse
Affiliation(s)
- Michaël Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, BP 1039, F-51687, Reims Cedex 2, France.
| | | | | | | |
Collapse
|
26
|
Kamath A, Vargas-Hernández RA, Krems RV, Carrington T, Manzhos S. Neural networks vs Gaussian process regression for representing potential energy surfaces: A comparative study of fit quality and vibrational spectrum accuracy. J Chem Phys 2018; 148:241702. [DOI: 10.1063/1.5003074] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Aditya Kamath
- Department of Mechanical Engineering, National University of Singapore, Block EA, #07-08, 9 Engineering Drive 1, Singapore 117576
| | | | - Roman V. Krems
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Tucker Carrington
- Department of Chemistry, Queen’s University, Chernoff Hall, 90 Bader Lane, Kingston, Ontario K7L 3N6, Canada
| | - Sergei Manzhos
- Department of Mechanical Engineering, National University of Singapore, Block EA, #07-08, 9 Engineering Drive 1, Singapore 117576
| |
Collapse
|
27
|
Dral PO, Owens A, Yurchenko SN, Thiel W. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels. J Chem Phys 2018; 146:244108. [PMID: 28668062 DOI: 10.1063/1.4989536] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present an efficient approach for generating highly accurate molecular potential energy surfaces (PESs) using self-correcting, kernel ridge regression (KRR) based machine learning (ML). We introduce structure-based sampling to automatically assign nuclear configurations from a pre-defined grid to the training and prediction sets, respectively. Accurate high-level ab initio energies are required only for the points in the training set, while the energies for the remaining points are provided by the ML model with negligible computational cost. The proposed sampling procedure is shown to be superior to random sampling and also eliminates the need for training several ML models. Self-correcting machine learning has been implemented such that each additional layer corrects errors from the previous layer. The performance of our approach is demonstrated in a case study on a published high-level ab initio PES of methyl chloride with 44 819 points. The ML model is trained on sets of different sizes and then used to predict the energies for tens of thousands of nuclear configurations within seconds. The resulting datasets are utilized in variational calculations of the vibrational energy levels of CH3Cl. By using both structure-based sampling and self-correction, the size of the training set can be kept small (e.g., 10% of the points) without any significant loss of accuracy. In ab initio rovibrational spectroscopy, it is thus possible to reduce the number of computationally costly electronic structure calculations through structure-based sampling and self-correcting KRR-based machine learning by up to 90%.
Collapse
Affiliation(s)
- Pavlo O Dral
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Alec Owens
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Sergei N Yurchenko
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
28
|
Accurate Theoretical Methane Line Lists in the Infrared up to 3000 K and Quasi-continuum Absorption/Emission Modeling for Astrophysical Applications. ACTA ACUST UNITED AC 2017. [DOI: 10.3847/1538-4357/aa8909] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Li X, Xie Y, Hu D, Lan Z. Analysis of the Geometrical Evolution in On-the-Fly Surface-Hopping Nonadiabatic Dynamics with Machine Learning Dimensionality Reduction Approaches: Classical Multidimensional Scaling and Isometric Feature Mapping. J Chem Theory Comput 2017; 13:4611-4623. [DOI: 10.1021/acs.jctc.7b00394] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xusong Li
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish
Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Department
of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Yu Xie
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Deping Hu
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenggang Lan
- CAS
Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy
and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
- Sino-Danish
Center for Education and Research/Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Schmitz G, Christiansen O. Accuracy of Frequencies Obtained with the Aid of Explicitly Correlated Wave Function Based Methods. J Chem Theory Comput 2017; 13:3602-3613. [PMID: 28686442 DOI: 10.1021/acs.jctc.7b00476] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We asses the basis set convergence of harmonic frequencies using different explicitly correlated wave function based methods. All commonly available CCSD(T) variants as well as MP2-F12 and MP4(F12*) are considered, and a hierarchy of the different approaches is established. As for reaction and atomization energies, CCSD(F12*)(T*) is a close approximation to CCSD(F12)(T*) and clearly superior to the other tested approximations. The used scaling for the triples correction enhances the accuracy relative to CCSD(F12*)(T) especially for small basis sets and is very attractive since no additional computational costs are added. However, this scaling slightly breaks size consistency, and therefore we additionally study the accuracy of CCSD(F12*)(T*) and CCSD(F12*)(T) in the context of calculating anharmonic frequencies to check if this causes problems in the generation of the potential energy surface (PES). We find a fast basis set convergence for harmonic and anharmonic frequencies. Already in the cc-pVDZ-F12 basis, the RMSD to the CBS limit is only around 4-5 cm-1.
Collapse
Affiliation(s)
- Gunnar Schmitz
- Department of Chemistry, Aarhus University , Aarhus, Denmark
| | | |
Collapse
|
31
|
Nikitin A, Rey M, Rodina A, Krishna BM, Tyuterev VG. Full-Dimensional Potential Energy and Dipole Moment Surfaces of GeH4 Molecule and Accurate First-Principle Rotationally Resolved Intensity Predictions in the Infrared. J Phys Chem A 2016; 120:8983-8997. [DOI: 10.1021/acs.jpca.6b07732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A.V. Nikitin
- Laboratory
of Theoretical Spectroscopy, V. E. Zuev Institute of Atmospheric Optics, SB RAS, 1, Academician Zuev Square, 634021 Tomsk, Russia
| | - M. Rey
- Groupe
de Spectrométrie Moléculaire et Atmosphérique,
UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| | - A. Rodina
- Laboratory
of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia
| | - B. M. Krishna
- Laboratory
of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University, 36 Lenin Avenue, 634050 Tomsk, Russia
| | - Vl. G. Tyuterev
- Groupe
de Spectrométrie Moléculaire et Atmosphérique,
UMR CNRS 7331, Université de Reims, U.F.R. Sciences, B.P. 1039, 51687 Reims Cedex 2, France
| |
Collapse
|
32
|
Nikitin AV, Rey M, Tyuterev VG. First fullyab initiopotential energy surface of methane with a spectroscopic accuracy. J Chem Phys 2016. [DOI: 10.1063/1.4961973] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
33
|
Owens A, Yurchenko SN, Yachmenev A, Tennyson J, Thiel W. A highly accurate ab initio potential energy surface for methane. J Chem Phys 2016; 145:104305. [DOI: 10.1063/1.4962261] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Alec Owens
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Sergei N. Yurchenko
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Andrey Yachmenev
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Jonathan Tennyson
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
34
|
Shao K, Chen J, Zhao Z, Zhang DH. Communication: Fitting potential energy surfaces with fundamental invariant neural network. J Chem Phys 2016; 145:071101. [DOI: 10.1063/1.4961454] [Citation(s) in RCA: 133] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kejie Shao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Jun Chen
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Zhiqiang Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Dong H. Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People’s Republic of China and University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| |
Collapse
|
35
|
Jiang B, Li J, Guo H. Potential energy surfaces from high fidelity fitting ofab initiopoints: the permutation invariant polynomial - neural network approach. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1200347] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
36
|
Walker KM, Dumouchel F, Lique F, Dawes R. The first potential energy surfaces for the C6H−–H2 and C6H−–He collisional systems and their corresponding inelastic cross sections. J Chem Phys 2016; 145:024314. [DOI: 10.1063/1.4955200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Kyle M. Walker
- LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre Cedex, France
| | - Fabien Dumouchel
- LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre Cedex, France
| | - François Lique
- LOMC-UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre Cedex, France
| | - Richard Dawes
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, USA
| |
Collapse
|
37
|
Dawes R, Ndengué SA. Single- and multireference electronic structure calculations for constructing potential energy surfaces. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1195102] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Herman M, Földes T, Didriche K, Lauzin C, Vanfleteren T. Overtone spectroscopy of molecular complexes containing small polyatomic molecules. INT REV PHYS CHEM 2016. [DOI: 10.1080/0144235x.2016.1171039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Yu HG, Han H, Guo H. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4+ and Isotopomers on An Accurate Ab Initio Potential Energy Surface. J Phys Chem A 2016; 120:2185-93. [DOI: 10.1021/acs.jpca.6b01946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hua-Gen Yu
- Department of Chemistry, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Huixian Han
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- School of Physics, Northwest University, Xi’an, Shaanxi 710069, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
40
|
Rey M, Nikitin AV, Campargue A, Kassi S, Mondelain D, Tyuterev VG. Ab initio variational predictions for understanding highly congested spectra: rovibrational assignment of 108 new methane sub-bands in the icosad range (6280–7800 cm−1). Phys Chem Chem Phys 2016; 18:176-89. [DOI: 10.1039/c5cp05265c] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work demonstrates for the first time how accurate first principles global calculations allow assigning complicated spectra of a molecule with more than 4 atoms.
Collapse
Affiliation(s)
- Michaël Rey
- Groupe de Spectrométrie Moléculaire et Atmosphérique
- Reims Cedex 2
- France
| | - Andrei V. Nikitin
- Laboratory of Theoretical Spectroscopy
- Institute of Atmospheric Optics
- SB RAS
- 634055 TOMSK
- Russia
| | | | - Samir Kassi
- Univ. Grenoble Alpes
- LIPhy
- F-38000 Grenoble
- France
- CNRS
| | | | | |
Collapse
|
41
|
|
42
|
Li J, Jiang B, Song H, Ma J, Zhao B, Dawes R, Guo H. From ab Initio Potential Energy Surfaces to State-Resolved Reactivities: X + H2O ↔ HX + OH [X = F, Cl, and O(3P)] Reactions. J Phys Chem A 2015; 119:4667-87. [DOI: 10.1021/acs.jpca.5b02510] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jun Li
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- School of Chemistry
and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Bin Jiang
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Hongwei Song
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jianyi Ma
- Institute of Atomic
and Molecular Physics, Sichuan University, Chengdu, Sichuan 610065, China
| | - Bin Zhao
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Richard Dawes
- Department
of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
43
|
Han H, Song H, Li J, Guo H. Near Spectroscopically Accurate Ab Initio Potential Energy Surface for NH4+ and Variational Calculations of Low-Lying Vibrational Levels. J Phys Chem A 2015; 119:3400-6. [DOI: 10.1021/acs.jpca.5b01835] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huixian Han
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
- School
of Physics, Northwest University, Xi’an, Shaanxi 710069, China
| | - Hongwei Song
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jun Li
- School
of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030, China
| | - Hua Guo
- Department
of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|