1
|
Zheng D, Xu D, Qiu J, Zhang W, Li H, Zhou D. Insight into the effect of anions on cycloaddition of CO2 catalyzed by carboxylate anion-based ionic liquids: A theoretical study by QM and MD. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
2
|
Santos VHJM, Pontin D, Rambo RS, Seferin M. The Application of Quantitative Structure–Property Relationship Modeling and Exploratory Analysis to Screen Catalysts for the Synthesis of Oleochemical Carbonates from
CO
2
and Bio‐Based Epoxides. J AM OIL CHEM SOC 2020. [DOI: 10.1002/aocs.12361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Victor Hugo Jacks Mendes Santos
- School of TechnologyPUCRS—Pontifical Catholic University of Rio Grande do Sul 6681 Ipiranga Avenue—Building 12 Porto Alegre 90619‐900 Brazil
- Engineering and Materials Technology Graduate ProgramPontifical Catholic University of Rio Grande do Sul 6681 Ipiranga Avenue—Building 32 Porto Alegre 90619‐900 Brazil
- Institute of Petroleum and Natural ResourcesPontifical Catholic University of Rio Grande do Sul 6681 Ipiranga Avenue—Building 96J Porto Alegre 90619‐900 Brazil
| | - Darlan Pontin
- School of TechnologyPUCRS—Pontifical Catholic University of Rio Grande do Sul 6681 Ipiranga Avenue—Building 12 Porto Alegre 90619‐900 Brazil
| | - Raoní Scheibler Rambo
- Institute of Petroleum and Natural ResourcesPontifical Catholic University of Rio Grande do Sul 6681 Ipiranga Avenue—Building 96J Porto Alegre 90619‐900 Brazil
| | - Marcus Seferin
- School of TechnologyPUCRS—Pontifical Catholic University of Rio Grande do Sul 6681 Ipiranga Avenue—Building 12 Porto Alegre 90619‐900 Brazil
- Engineering and Materials Technology Graduate ProgramPontifical Catholic University of Rio Grande do Sul 6681 Ipiranga Avenue—Building 32 Porto Alegre 90619‐900 Brazil
- Institute of Petroleum and Natural ResourcesPontifical Catholic University of Rio Grande do Sul 6681 Ipiranga Avenue—Building 96J Porto Alegre 90619‐900 Brazil
| |
Collapse
|
3
|
Zhang T, Zhang Y, Wang Y, Huo F, Li Z, Zeng Q, He H, Li X. Theoretical Insights Into the Depolymerization Mechanism of Lignin to Methyl p-hydroxycinnamate by [Bmim][FeCl 4] Ionic Liquid. Front Chem 2019; 7:446. [PMID: 31275927 PMCID: PMC6591258 DOI: 10.3389/fchem.2019.00446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/31/2019] [Indexed: 11/30/2022] Open
Abstract
Depolymerization of lignin into valuable aromatic compounds is an important starting point for its valorization strategies, which requires the cleavage of C-O and C-C bonds between lignin monomer units. The catalytic cleavage of these bonds is still difficult and challenging. Our previous experimental investigation (Green Chem., 2018, 20: 3743) has shown that methyl p-hydroxycinnamate (MPC) can be produced from molecular tailoring of H unit in lignin by the cleavage of the γ-O ester bond. In this study, the mechanism of [Bmim][FeCl4]-catalyzed depolymerization of lignin was investigated by using the density functional theory (DFT) method. The results reveal that [FeCl4]- anion of the catalyst plays a decisive role in the whole catalytic process, where two possible activation modes including three different potential reaction pathways can realize the depolymerization of lignin model compound. The calculated overall barriers of the catalytic conversion along these potential routes show that the third potential pathway, i.e., methanol firstly activated by [Bmim][FeCl4], has the most probability with the lowest energy barrier, while the second pathway is excluded because the energy barrier is too high. Also, the results illustrate that the solvent effect is beneficial to the reduction of the relative energy for the reaction to form the transition states. Hence, the obtained molecular level information can identify the favorable conversion process catalyzed by metallic ionic liquids to a certain extent, and it is desirable to enhance the utilization of biomass as a ubiquitous feedstock.
Collapse
Affiliation(s)
- Tian Zhang
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yaqin Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yanlei Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zhangmin Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Qiang Zeng
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| | - Hongyan He
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xuehui Li
- State Key Laboratory of Pulp and Paper Engineering, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
4
|
Zhong H, Su Y, Chen X, Li X, Wang R. Imidazolium- and Triazine-Based Porous Organic Polymers for Heterogeneous Catalytic Conversion of CO 2 into Cyclic Carbonates. CHEMSUSCHEM 2017; 10:4855-4863. [PMID: 29052370 DOI: 10.1002/cssc.201701821] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/19/2017] [Indexed: 06/07/2023]
Abstract
CO2 adsorption and concomitant catalytic conversion into useful chemicals are promising approaches to alleviate the energy crisis and effects of global warming. This is highly desirable for developing new types of heterogeneous catalytic materials containing CO2 -philic groups and catalytic active sites for CO2 chemical transformation. Here, we present an imidazolium- and triazine-based porous organic polymer with counter chloride anion (IT-POP-1). The porosity and CO2 affinity of IT-POP-1 may be modulated at the molecular level through a facile anion-exchange strategy. Compared with the post-modified polymers with iodide and hexafluorophosphate anions, IT-POP-1 possesses the highest surface area and the best CO2 uptake capacity with excellent adsorption selectivity over N2 . The roles of the task-specific components such as triazine, imidazolium, hydroxyl, and counter anions in CO2 absorption and catalytic performance were illustrated. IT-POP-1 exhibits the highest catalytic activity and excellent recyclability in solvent- and additive-free cycloaddition reaction of CO2 with epoxides.
Collapse
Affiliation(s)
- Hong Zhong
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Fujian Normal University, 350007, Fuzhou, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Yanqing Su
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Fujian Normal University, 350007, Fuzhou, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Xingwei Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Xiaoju Li
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Chemical Engineering, Fujian Normal University, 350007, Fuzhou, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| | - Ruihu Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 350002, Fuzhou, P. R. China
| |
Collapse
|
5
|
Alves M, Grignard B, Mereau R, Jerome C, Tassaing T, Detrembleur C. Organocatalyzed coupling of carbon dioxide with epoxides for the synthesis of cyclic carbonates: catalyst design and mechanistic studies. Catal Sci Technol 2017. [DOI: 10.1039/c7cy00438a] [Citation(s) in RCA: 321] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The coupling of carbon dioxide (CO2) with epoxides with the formation of cyclic carbonates is a highly attractive 100% atom economic reaction. It represents a greener and safer alternative to the conventional synthesis of cyclic carbonates from diols and toxic phosgene.
Collapse
Affiliation(s)
- M. Alves
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- Université de Liège
- Belgium
- Institut des Sciences Moléculaires
| | - B. Grignard
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- Université de Liège
- Belgium
| | - R. Mereau
- Institut des Sciences Moléculaires
- UMR 5255 CNRS Université Bordeaux
- F-33405 Talence Cedex
- France
| | - C. Jerome
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- Université de Liège
- Belgium
| | - T. Tassaing
- Institut des Sciences Moléculaires
- UMR 5255 CNRS Université Bordeaux
- F-33405 Talence Cedex
- France
| | - C. Detrembleur
- Center for Education and Research on Macromolecules (CERM)
- CESAM Research Unit
- Université de Liège
- Belgium
| |
Collapse
|
6
|
Lan DH, Fan N, Wang Y, Gao X, Zhang P, Chen L, Au CT, Yin SF. Recent advances in metal-free catalysts for the synthesis of cyclic carbonates from CO2 and epoxides. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(15)61085-3] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Affiliation(s)
- Ananda S. Amarasekara
- Department of Chemistry, Prairie View A&M University, Prairie View, Texas 77446, United States
| |
Collapse
|