• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4637539)   Today's Articles (9585)   Subscriber (50117)
For: Eriksen JJ. Efficient and portable acceleration of quantum chemical many-body methods in mixed floating point precision using OpenACC compiler directives. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1271155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Number Cited by Other Article(s)
1
Pokhilko P, Yeh CN, Morales MA, Zgid D. Tensor hypercontraction for fully self-consistent imaginary-time GF2 and GWSOX methods: Theory, implementation, and role of the Green's function second-order exchange for intermolecular interactions. J Chem Phys 2024;161:084108. [PMID: 39185845 DOI: 10.1063/5.0215954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024]  Open
2
Nagy PR. State-of-the-art local correlation methods enable affordable gold standard quantum chemistry for up to hundreds of atoms. Chem Sci 2024:d4sc04755a. [PMID: 39246365 PMCID: PMC11376132 DOI: 10.1039/d4sc04755a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/10/2024]  Open
3
Tehrani A, Richer M, Heidar-Zadeh F. CuGBasis: High-performance CUDA/Python library for efficient computation of quantum chemistry density-based descriptors for larger systems. J Chem Phys 2024;161:072501. [PMID: 39158048 DOI: 10.1063/5.0216781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/17/2024] [Indexed: 08/20/2024]  Open
4
Di Felice R, Mayes ML, Richard RM, Williams-Young DB, Chan GKL, de Jong WA, Govind N, Head-Gordon M, Hermes MR, Kowalski K, Li X, Lischka H, Mueller KT, Mutlu E, Niklasson AMN, Pederson MR, Peng B, Shepard R, Valeev EF, van Schilfgaarde M, Vlaisavljevich B, Windus TL, Xantheas SS, Zhang X, Zimmerman PM. A Perspective on Sustainable Computational Chemistry Software Development and Integration. J Chem Theory Comput 2023;19:7056-7076. [PMID: 37769271 PMCID: PMC10601486 DOI: 10.1021/acs.jctc.3c00419] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 09/30/2023]
5
Manathunga M, Aktulga HM, Götz AW, Merz KM. Quantum Mechanics/Molecular Mechanics Simulations on NVIDIA and AMD Graphics Processing Units. J Chem Inf Model 2023;63:711-717. [PMID: 36720086 DOI: 10.1021/acs.jcim.2c01505] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
6
Guo M, Wang Z, Lu Y, Wang F. Energy correction and analytic energy gradients due to triples in CCSD(T) with spin–orbit coupling on graphic processing units using single-precision data. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1974591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
7
Hohenstein EG, Martínez TJ. GPU acceleration of rank-reduced coupled-cluster singles and doubles. J Chem Phys 2021;155:184110. [PMID: 34773962 DOI: 10.1063/5.0063467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
8
Manathunga M, Jin C, Cruzeiro VWD, Miao Y, Mu D, Arumugam K, Keipert K, Aktulga HM, Merz KM, Götz AW. Harnessing the Power of Multi-GPU Acceleration into the Quantum Interaction Computational Kernel Program. J Chem Theory Comput 2021;17:3955-3966. [PMID: 34062061 DOI: 10.1021/acs.jctc.1c00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
9
Laqua H, Kussmann J, Ochsenfeld C. Accelerating seminumerical Fock-exchange calculations using mixed single- and double-precision arithmethic. J Chem Phys 2021;154:214116. [PMID: 34240990 DOI: 10.1063/5.0045084] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
10
Gyevi-Nagy L, Kállay M, Nagy PR. Accurate Reduced-Cost CCSD(T) Energies: Parallel Implementation, Benchmarks, and Large-Scale Applications. J Chem Theory Comput 2021;17:860-878. [PMID: 33400527 PMCID: PMC7884001 DOI: 10.1021/acs.jctc.0c01077] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 11/28/2022]
11
Calvin JA, Peng C, Rishi V, Kumar A, Valeev EF. Many-Body Quantum Chemistry on Massively Parallel Computers. Chem Rev 2020;121:1203-1231. [DOI: 10.1021/acs.chemrev.0c00006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
12
Fales BS, Curtis ER, Johnson KG, Lahana D, Seritan S, Wang Y, Weir H, Martínez TJ, Hohenstein EG. Performance of Coupled-Cluster Singles and Doubles on Modern Stream Processing Architectures. J Chem Theory Comput 2020;16:4021-4028. [PMID: 32567305 DOI: 10.1021/acs.jctc.0c00336] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
13
Wang Z, Guo M, Wang F. Single-precision open-shell CCSD and CCSD(T) calculations on graphics processing units. Phys Chem Chem Phys 2020;22:25103-25111. [DOI: 10.1039/d0cp03800h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
14
Yoshikawa T, Komoto N, Nishimura Y, Nakai H. GPU-Accelerated Large-Scale Excited-State Simulation Based on Divide-and-Conquer Time-Dependent Density-Functional Tight-Binding. J Comput Chem 2019;40:2778-2786. [PMID: 31441083 DOI: 10.1002/jcc.26053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/04/2019] [Accepted: 08/07/2019] [Indexed: 01/09/2023]
15
Gyevi-Nagy L, Kállay M, Nagy PR. Integral-Direct and Parallel Implementation of the CCSD(T) Method: Algorithmic Developments and Large-Scale Applications. J Chem Theory Comput 2019;16:366-384. [DOI: 10.1021/acs.jctc.9b00957] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
16
Nagy PR, Kállay M. Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods. J Chem Theory Comput 2019;15:5275-5298. [DOI: 10.1021/acs.jctc.9b00511] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
17
Pokhilko P, Epifanovsky E, Krylov AI. Double Precision Is Not Needed for Many-Body Calculations: Emergent Conventional Wisdom. J Chem Theory Comput 2018;14:4088-4096. [DOI: 10.1021/acs.jctc.8b00321] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
18
Nagy PR, Samu G, Kállay M. Optimization of the Linear-Scaling Local Natural Orbital CCSD(T) Method: Improved Algorithm and Benchmark Applications. J Chem Theory Comput 2018;14:4193-4215. [DOI: 10.1021/acs.jctc.8b00442] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
19
Nagy PR, Kállay M. Optimization of the linear-scaling local natural orbital CCSD(T) method: Redundancy-free triples correction using Laplace transform. J Chem Phys 2017;146:214106. [PMID: 28576082 PMCID: PMC5453808 DOI: 10.1063/1.4984322] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/05/2017] [Indexed: 01/30/2023]  Open
PrevPage 1 of 1 1Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA