1
|
Schlegel HB. Charge Migration in HCCI Cations Probed by Strong Field Ionization: Time-Dependent Configuration Interaction and Vibrational Wavepacket Simulations. J Phys Chem A 2023; 127:6040-6050. [PMID: 37459461 DOI: 10.1021/acs.jpca.3c02667] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Strong field ionization of neutral iodoacetylene (HCCI) can produce a coherent superposition of the X and A cations and results in charge migration between the CC π orbital and the iodine π-type lone pair. This charge migration causes oscillations in the rate of strong field ionization of the cation to the dication that can be monitored using intense few-cycle probe pulses. The dynamics and strong field ionization of the coherent superposition the X and A states of HCCI+ have been modeled by time-dependent configuration interaction (TDCI) simulations. When the nuclei are allowed to move, the electronic wavefunctions need to be multiplied by vibrational wavefunctions. Nuclear motion has been modeled by vibrational packets moving on quadratic approximations to the potential energy surfaces for the X and A states of the cation. The overlap of the vibrational wavepackets decays in about 10-15 fs. Consequently, the oscillations in the strong field ionization decay on the same time scale. A revival of the vibrational overlap and in the oscillations of the strong field ionization is seen at 60-110 fs. TDCI simulations show that the decay and revival of the charge migration can be monitored by strong field ionization with intense 2- and 4-cycle linearly polarized 800 nm pulses. The revival is also seen with 7-cycle pulses.
Collapse
Affiliation(s)
- H Bernhard Schlegel
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
2
|
Schlegel HB, Hoerner P, Li W. Ionization of HCCI Neutral and Cations by Strong Laser Fields Simulated With Time Dependent Configuration Interaction. Front Chem 2022; 10:866137. [PMID: 35548678 PMCID: PMC9081608 DOI: 10.3389/fchem.2022.866137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/24/2022] [Indexed: 12/05/2022] Open
Abstract
Strong field ionization of neutral iodoacetylene (HCCI) can produce a coherent superposition of the X and A cations. This superposition results in charge migration between the CC π orbital and the iodine π-type lone pair which can be monitored by strong field ionization with short, intense probe pulses. Strong field ionization of the X and A states of HCCI cation was simulated with time-dependent configuration interaction using singly ionized configurations and singly excited, singly ionized configurations (TD-CISD-IP) and an absorbing boundary. Studies with static fields were used to obtain the 3-dimensional angular dependence of instantaneous ionization rates by strong fields and the orbitals involved in producing the cations and dications. The frequency of charge oscillation is determined by the energy separation of the X and A states; this separation can change depending on the direction and strength of the field. Furthermore, fields along the molecular axis can cause extensive mixing between the field-free X and A configurations. For coherent superpositions of the X and A states, the charge oscillations are characterized by two frequencies-the driving frequency of the laser field of the probe pulse and the intrinsic frequency due to the energy separation between the X and A states. For linear and circularly polarized pulses, the ionization rates show marked differences that depend on the polarization direction of the pulse, the carrier envelope phase and initial phase of the superposition. Varying the initial phase of the superposition at the beginning of the probe pulse is analogous to changing the delay between the pump and probe pulses. The charge oscillation in the coherent superposition of the X and A states results in maxima and minima in the ionization yield as a function of the superposition phase.
Collapse
|
3
|
Jia D, Yang Y. Systematic Investigation of the Reliability of the Frozen Nuclei Approximation for Short-Pulse Excitation: The Example of HCCI+. Front Chem 2022; 10:857348. [PMID: 35372267 PMCID: PMC8966390 DOI: 10.3389/fchem.2022.857348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
In this work we quantitatively study the reliability of the frozen nuclei approximation for ultrafast dynamics. Specifically we study laser excitation of HCCI+ from its ground state to the first electronically excited state. The population of the first excited state is obtained by both the frozen nuclei approximation and by multidimensional nuclear dynamics. Detailed comparison of the results by the two methods are performed to provide quantitative criteria for the reliability of the frozen nuclei approximation for this system.
Collapse
Affiliation(s)
- Dongming Jia
- MOE Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi’an Jiaotong University, Xi’an, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
- *Correspondence: Yonggang Yang,
| |
Collapse
|
4
|
Jia D, Manz J, Yang Y. Timing the recoherences of attosecond electronic charge migration by quantum control of femtosecond nuclear dynamics: A case study for HCCI . J Chem Phys 2019; 151:244306. [PMID: 31893866 DOI: 10.1063/1.5134665] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This work suggests an approach to a new target of laser control of charge migration in molecules or molecular ions. The target is motivated by the fact that nuclear motions can not only cause decoherence of charge migration, typically within few femtoseconds, but they may also enable the reappearance of charge migration after much longer times, typically several tens or even hundreds of femtoseconds. This phenomenon is called recoherence of charge migration, opposite to its decoherence. The details depend on the initiation of the original charge migration by an ultrashort strong intense pump laser pulse. It may reappear quasiperiodically, with reference period Tr. We show that a well-designed pump-dump laser pulse can enforce recoherences of charge migration at different target times Tc, for example, at Tc ≈ Tr/2. The approach is demonstrated by quantum dynamics simulations of the laser driven electronic and nuclear motions in the oriented linear cation HCCI+. First, the concept is explained in terms of a didactic one-dimensional (1D) model that accounts for the decisive CI stretch. The 1D results are then confirmed by a three-dimensional model for the complete set of the CH, CC, and CI stretches.
Collapse
Affiliation(s)
- Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, 92, Wucheng Road, Taiyuan 030006, China
| |
Collapse
|
5
|
Yang L, Reimers JR, Kobayashi R, Hush NS. Competition between charge migration and charge transfer induced by nuclear motion following core ionization: Model systems and application to Li 2. J Chem Phys 2019; 151:124108. [PMID: 31575213 DOI: 10.1063/1.5117246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Attosecond and femtosecond spectroscopies present opportunities for the control of chemical reaction dynamics and products, as well as for quantum information processing; we address the somewhat unique situation of core-ionization spectroscopy which, for dimeric chromophores, leads to strong valence charge localization and hence tightly paired potential-energy surfaces of very similar shape. Application is made to the quantum dynamics of core-ionized Li2 +. This system is chosen as Li2 is the simplest stable molecule facilitating both core ionization and valence ionization. First, the quantum dynamics of some model surfaces are considered, with the surprising result that subtle differences in shape between core-ionization paired surfaces can lead to dramatic differences in the interplay between electronic charge migration and charge transfer induced by nuclear motion. Then, equation-of-motion coupled-cluster calculations are applied to determine potential-energy surfaces for 8 core-excited state pairs, calculations believed to be the first of their type for other than the lowest-energy core-ionized molecular pair. While known results for the lowest-energy pair suggest that Li2 + is unsuitable for studying charge migration, higher-energy pairs are predicted to yield results showing competition between charge migration and charge transfer. Central is a focus on the application of Hush's 1975 theory for core-ionized X-ray photoelectron spectroscopy to understand the shapes of the potential-energy surfaces and hence predict key features of charge migration.
Collapse
Affiliation(s)
- Likun Yang
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Jeffrey R Reimers
- School of Mathematical and Physical Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Rika Kobayashi
- International Centre for Quantum and Molecular Structures and Department of Physics, Shanghai University, Shanghai 200444, China
| | - Noel S Hush
- School of Molecular Biosciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
6
|
Jia D, Manz J, Yang Y. De- and Recoherence of Charge Migration in Ionized Iodoacetylene. J Phys Chem Lett 2019; 10:4273-4277. [PMID: 31287313 DOI: 10.1021/acs.jpclett.9b01687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During charge migration, electrons flow rapidly from one site of a molecule to another, perhaps inducing subsequent processes (e.g., selective breaking of chemical bonds). The first joint experimental and theoretical preparation and measurement of the initial state and subsequent quantum dynamics simulation of charge migration for fixed nuclei was demonstrated recently for oriented, ionized iodoacetylene. Here, we present new quantum dynamics simulations for the same system with moving nuclei. They reveal the decisive role of the nuclei, i.e. they switch charge migration off (decoherence) and on (recoherence). This is a new finding in attosecond-to-femtosecond chemistry and physics which opens new prospects for laser control over electronic dynamics via nuclear motions.
Collapse
Affiliation(s)
- Dongming Jia
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
| | - Jörn Manz
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- International Center for Chemical Theory , University of Science and Technology of China , Hefei 230026 , China
- Institut für Chemie und Biochemie , Freie Universität Berlin , 14195 Berlin , Germany
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan 030006 , China
| | - Yonggang Yang
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy , Shanxi University , Taiyuan 030006 , China
- Collaborative Innovation Center of Extreme Optics , Shanxi University , Taiyuan 030006 , China
| |
Collapse
|
7
|
Matsuzaki R, Takatsuka K. Electronic and nuclear fluxes induced by quantum interference in the adiabatic and nonadiabatic dynamics in the Born-Huang representation. J Chem Phys 2019; 150:014103. [DOI: 10.1063/1.5066571] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rei Matsuzaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| |
Collapse
|
8
|
Matsuzaki R, Takatsuka K. Electronic and nuclear flux analysis on nonadiabatic electron transfer reaction: A view from single-configuration adiabatic born-huang representation. J Comput Chem 2018; 40:148-163. [DOI: 10.1002/jcc.25557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/16/2018] [Accepted: 07/24/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Rei Matsuzaki
- Fukui Institute for Fundamental Chemistry; Kyoto University; Sakyou-ku Kyoto Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry; Kyoto University; Sakyou-ku Kyoto Japan
| |
Collapse
|
9
|
Albert J, Hader K, Engel V. Communication: On the calculation of time-dependent electron flux within the Born-Oppenheimer approximation: A flux-flux reflection principle. J Chem Phys 2017; 147:241101. [DOI: 10.1063/1.5011807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Julian Albert
- Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Kilian Hader
- Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| | - Volker Engel
- Universität Würzburg, Institut für Physikalische und Theoretische Chemie, Emil-Fischer-Str. 42, 97074 Würzburg, Germany
| |
Collapse
|
10
|
Diestler DJ, Hermann G, Manz J. Charge Migration in Eyring, Walter and Kimball’s 1944 Model of the Electronically Excited Hydrogen-Molecule Ion. J Phys Chem A 2017. [DOI: 10.1021/acs.jpca.7b04714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dennis J. Diestler
- University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Gunter Hermann
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jörn Manz
- State
Key Laboratory of Quantum
Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan 030006, China
- Institut
für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|