1
|
Yao B, Alvarez VM, Paluch M, Fedor G, McLaughlin S, McGrogan A, Swadźba-Kwaśny M, Wojnarowska Z. Crystallization Kinetics of Phosphonium Ionic Liquids: Effect of Cation Alkyl Chain Length and Thermal History. J Phys Chem B 2024; 128:6610-6621. [PMID: 38924509 PMCID: PMC11247483 DOI: 10.1021/acs.jpcb.4c01720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
The effects of alkyl chain length on the crystallization kinetics and ion mobility of tetraalkylphosphonium, [P666,n][TFSI], (n = 2, 6, 8, and 12) ionic liquids were studied by differential scanning calorimetry (DSC) and broadband dielectric spectroscopy (BDS) over a wide temperature range. The liquid-glass transition temperature (Tg) and ion dynamics examined over a broad T range were almost insensitive to structural modifications of the phosphonium cation. In contrast, the crystallization kinetics were strongly affected by the length of the fourth alkyl chain. Furthermore, the thermal history of the sample (cold vs melt crystallization) significantly impacted the crystallization rate. It has been found that the nature of crystallization phenomena is the same across the homologous series, while the kinetic aspect differs. Finally, electric conductivity in supercooled liquid and crystalline solid phases was measured for all samples, revealing significant ionic conductivity, largely independent of the cation structure.
Collapse
Affiliation(s)
- B. Yao
- Institute
of Physics, The University of Silesia in
Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - V. Morales Alvarez
- Institute
of Physics, The University of Silesia in
Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - M. Paluch
- Institute
of Physics, The University of Silesia in
Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| | - G. Fedor
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Rd, Belfast, NI BT9 5AG, U.K.
| | - S. McLaughlin
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Rd, Belfast, NI BT9 5AG, U.K.
| | - A. McGrogan
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Rd, Belfast, NI BT9 5AG, U.K.
| | - M. Swadźba-Kwaśny
- The
QUILL Research Centre, School of Chemistry and Chemical Engineering, The Queen’s University of Belfast, David Keir Building, Stranmillis
Rd, Belfast, NI BT9 5AG, U.K.
| | - Z. Wojnarowska
- Institute
of Physics, The University of Silesia in
Katowice, 75 Pułku Piechoty 1A, Chorzów 41-500, Poland
| |
Collapse
|
2
|
Wong LN, Brunner M, Imberti S, Warr GG, Atkin R. Bulk Nanostructure of Mixtures of Choline Arginate, Choline Lysinate, and Water. J Phys Chem B 2024. [PMID: 38691762 DOI: 10.1021/acs.jpcb.4c01482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 05/03/2024]
Abstract
Neutron diffraction with empirical potential structure refinement was used to investigate the bulk liquid nanostructure of mixtures of choline arginate (Ch[Arg]), choline lysinate (Ch[Lys]), and water at mole ratios of 1Ch[Arg]:1Ch[Lys]:6H2O (balanced), 1Ch[Arg]:1Ch[Lys]:20H2O (balanced dilute), 3Ch[Arg]:1Ch[Lys]:12H2O (Arg- rich), and 1Ch[Arg]:3Ch[Lys]:12H2O (Lys- rich). The Arg- and Lys- anions tend not to associate due to electrostatic repulsion between charge groups and weak anion-anion attractions. This means that the local ion structures around the anions in these mixtures resemble the parent single-component systems. The bulk liquid nanostructure varies with the Arg-:Lys- ratio. In the Lys--rich mixture (1Ch[Arg]:3Ch[Lys]:12H2O), Lys- side chains cluster into a continuous apolar domain separated from a charged domain of polar groups. In the balanced mixture (1Ch[Arg]:1Ch[Lys]:6H2O), Lys- side chains form discrete apolar aggregates within a continuous polar domain of Arg-, Ch+, and water, and in the Arg--rich mixture (3Ch[Arg]:1Ch[Lys]:12H2O), the distribution of Lys- and Arg- is nearly homogeneous. Finally, in the balance dilute system (1Ch[Arg]:1Ch[Lys]:20H2O), a percolating water domain forms.
Collapse
Affiliation(s)
- Lucas N Wong
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Manuel Brunner
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| | - Silvia Imberti
- UKRI, STFC, ISIS Neutron and Muon Source, Rutherford Appleton Laboratory, Didcot OX11 0QX, United Kingdom
| | - Gregory G Warr
- School of Chemistry and University of Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rob Atkin
- School of Molecular Sciences, The University of Western Australia, Crawley, WA 6009, Australia
| |
Collapse
|
3
|
Depew DD, Vaghjiani GL, Parmar SM, Wang JJ. Liquid Structure and Hydrogen Bonding in Aqueous Hydroxylammonium Nitrate. J Phys Chem B 2024; 128:824-840. [PMID: 38194505 DOI: 10.1021/acs.jpcb.3c05623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/11/2024]
Abstract
Hydroxylammonium nitrate (HAN) has emerged as a promising component in ionic liquid-based spacecraft propellants. However, the physicochemical and structural properties of aqueous HAN have been largely overlooked. The purpose of this study is to investigate the hydrogen bonding in aqueous HAN and understand its implications on these properties and the proton transfer mechanism as a function of concentration. Classical polarizable molecular dynamics simulations have been employed with the APPLE&P force field to analyze the geometry of individual hydrogen bonds and the overall hydrogen-bonding network in various concentrations of aqueous HAN. Radial distribution functions (RDFs) and spatial distribution functions (SDFs) indicate the structural arrangement of the species and their hydrogen bonds. Projections of water density and the orientation of its electric dipole moment near the ions provide insight into the hydrogen-bonding network. The incorporation of water into the hydrogen-bonding network at high ion concentrations occurs via interstitial accommodation around the ions immediately outside the first solvation shell. While ion pairs are observed at all concentrations considered, the frequency of Ha···On hydrogen bonds increases substantially with the ion concentration. The findings contribute to a better fundamental understanding of HAN and the precursors of reactivity, crucial to the development of "green" spacecraft propellants.
Collapse
Affiliation(s)
- Daniel D Depew
- Department of Astronautical Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Ghanshyam L Vaghjiani
- Aerospace Systems Directorate, Air Force Research Laboratory, AFRL/RQRS, Edwards Air Force Base, California 93524, United States
| | - Shehan M Parmar
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Joseph J Wang
- Department of Astronautical Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Sappidi P, Gupta PK. Molecular simulations of understanding the Na + ion structure, dynamic and thermodynamic behavior in ionic liquids: Butyl ammonium hydrogen bisulfate and tri-butyl ammonium hydrogen bisulfate. J Mol Graph Model 2023; 125:108610. [PMID: 37657331 DOI: 10.1016/j.jmgm.2023.108610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/22/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
This manuscript presents the all-atom molecular dynamics simulations to investigate intermolecular structure and solvation thermodynamics of Na+ ion in two different ammonium-based protic ionic liquids (1) Butyl Ammonium hydrogen bisulfate [BA+][HSO4-], (2) Tri-butyl ammonium hydrogen bisulfate [TBA+][HSO4-]. The ionic liquid [BA+][HSO4-] show a more coordinated behavior when compared to [TBA+][HSO4-], which is observed over the temperature range from 278 K to 348 K. Hydrogens of the cations show a hydrogen bonding interaction with oxygens of anions. The cationic [TBA+] molecules show more solvation behavior with anions when compared to the [BA+]. The Na+ ion show a strong coordination structure with [HSO4-] in [TBA+][HSO4-] when compared to the [BA+][HSO4-]. We further calculate the detailed solvation free energy (ΔG) calculations using thermodynamic integration. We found that the ΔG of Na+ is more favorable in [TBA+][HSO4-] when compared to [BA+][HSO4-] in the temperature range varying from 278 K to 348 K. With the temperature rise, we observe the more favorable solvation of Na+ in both ionic liquids. On the other hand, the solvation of Cl- becomes less favorable. Overall, this manuscript provides detailed molecular level structural and thermodynamic origins of Na+ in protic ionic liquids useful for designing and developing sustainable electrolytes for Na+ battery applications.
Collapse
Affiliation(s)
- Praveenkumar Sappidi
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India.
| | - Prashant Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| |
Collapse
|
5
|
Gousseva E, Midgley SD, Seymour JM, Seidel R, Grau-Crespo R, Lovelock KRJ. Understanding X-ray Photoelectron Spectra of Ionic Liquids: Experiments and Simulations of 1-Butyl-3-methylimidazolium Thiocyanate. J Phys Chem B 2022; 126:10500-10509. [PMID: 36455069 PMCID: PMC9761679 DOI: 10.1021/acs.jpcb.2c06372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/03/2022]
Abstract
We demonstrate a combined experimental and computational approach to probe the electronic structure and atomic environment of an ionic liquid, based on core level binding energies. The 1-butyl-3-methylimidazolium thiocyanate [C4C1Im][SCN] ionic liquid was studied using ab initio molecular dynamics, and results were compared against previously published and new experimental X-ray photoelectron spectroscopy (XPS) data. The long-held assumption that initial-state effects in XPS dominate the measured binding energies is proven correct, which validates the established premise that the ground state electronic structure of the ionic liquid can be inferred directly from XPS measurements. A regression model based upon site electrostatic potentials and intramolecular bond lengths is shown to account accurately for variations in core-level binding energies within the ionic liquid, demonstrating the important effect of long-range interactions on the core levels and throwing into question the validity of traditional single ion pair ionic liquid calculations for interpreting XPS data.
Collapse
Affiliation(s)
| | - Scott D. Midgley
- Department
of Chemistry, University of Reading, ReadingRG6 6DX, U.K.
| | - Jake M. Seymour
- Department
of Chemistry, University of Reading, ReadingRG6 6DX, U.K.
| | - Robert Seidel
- Helmholtz-Zentrum
Berlin für Materialien und Energie (HZB), Berlin14109, Germany
| | | | | |
Collapse
|
6
|
Structure of ethylammonium hydrogen sulfate protic ionic liquid through DFT calculations and MD simulations: the role of hydrogen bonds. Struct Chem 2022. [DOI: 10.1007/s11224-022-02042-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/24/2022]
|
7
|
Yue K, Doherty B, Acevedo O. Comparison between Ab Initio Molecular Dynamics and OPLS-Based Force Fields for Ionic Liquid Solvent Organization. J Phys Chem B 2022; 126:3908-3919. [PMID: 35594504 DOI: 10.1021/acs.jpcb.2c01636] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/30/2022]
Abstract
OPLS-based force fields (FFs) have been shown to provide accurate bulk-phase properties for a wide variety of imidazolium-based ionic liquids (ILs). However, the ability of OPLS to reproduce an IL solvent structure is not as well-validated given the relative lack of high-level theoretical or experimental data available for comparison. In this study, ab initio molecular dynamics (AIMD) simulations were performed for three widely used ILs: the 1-butyl-3-methylimidazolium cation with chloride, tetrafluoroborate, or hexafluorophosphate anions, that is, [BMIM][Cl], [BMIM][BF4], and [BMIM][PF6], respectively, as a basis for further assessment of two unique IL FFs: the ±0.8 charge-scaled OPLS-2009IL FF and the OPLS-VSIL FF. The OPLS-2009IL FF employs a traditional all-atom functional form, whereas the OPLS-VSIL FF was developed using a virtual site that offloads negative charge to inside the plane of the ring with careful attention given to reproducing hydrogen bonding. Detailed comparisons between AIMD and the OPLS FFs were made based on radial distribution functions (RDFs), combined distribution functions (CDFs), and spatial distribution functions (SDFs) to examine cation-anion interactions and π+-π+ stacking between the imidazolium rings. While both FFs were able to correctly capture the general solvent structure of these popular ILs, the OPLS-VSIL FF quantitatively reproduced interaction distances more accurately. In addition, this work provides further insights into the different short- and long-range structure patterns of these popular ILs.
Collapse
Affiliation(s)
- Kun Yue
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Brian Doherty
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Orlando Acevedo
- Department of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| |
Collapse
|
8
|
Le Donne A, Russo S, Bodo E. Assessing the propensity toward ionization in nanosized clusters of protic ionic liquids by Ab-initio methods. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/16/2022]
|
9
|
Palumbo O, Paolone A, Campetella M, Ramondo F, Cappelluti F, Gontrani L. New insights into chloromethyl-oxirane and chloromethyl-thiirane in liquid and solid phase from low-temperature infrared spectroscopy and ab initio modeling. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 247:119061. [PMID: 33091738 DOI: 10.1016/j.saa.2020.119061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/05/2020] [Revised: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
A detailed study of the conformational landscape of chloromethyl-oxirane and chloromethyl-thiirane is here reported. The equilibrium of the three different conformers of the two molecules was assessed, using a joint approach of experimental and theoretical methods. High quality infrared spectroscopy measurements of the liquid and of the crystalline phases were interpreted with the aid of ab initio Molecular Dynamics (AIMD) simulations, anharmonic frequencies and free energy calculations, obtaining a very good reproduction of the experimental data. The modulation of the conformational equilibrium upon the addition of polar and non-polar solvents was computationally evaluated and results found a confirmation in experimental measures.
Collapse
Affiliation(s)
- O Palumbo
- CNR-ISC, UOS La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| | - A Paolone
- CNR-ISC, UOS La Sapienza, P. le A. Moro 5, 00185 Roma, Italy
| | - M Campetella
- Dipartimento di Chimica, Università degli Studi di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - F Ramondo
- Dipartimento di Chimica, Università degli Studi di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - F Cappelluti
- Dipartimento di Ingegneria e Scienza dell'Informazione e Matematica, Università dell'Aquila, Via Vetoio 5, Coppito, 67100 L'Aquila, Italy.
| | - L Gontrani
- Dipartimento di Chimica, Università degli Studi di Roma, P. le Aldo Moro 5, 00185 Roma, Italy; Dipartimento di Ingegneria Industriale, Università di Roma "Tor Vergata", Viale degli ingegneri, I-00133 Roma, Italy.
| |
Collapse
|
10
|
Campetella M, Cappelluti F, Fasolato C, Conte D, Palumbo O, Paolone A, Carbone M, Postorino P, Gontrani L. Physical-chemical studies on putrescine (butane-1,4-diamine) and its solutions: Experimental and computational investigations. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/23/2022]
|
11
|
Di Muzio S, Ramondo F, Gontrani L, Ferella F, Nardone M, Benassi P. Choline Hydrogen Dicarboxylate Ionic Liquids by X-ray Scattering, Vibrational Spectroscopy and Molecular Dynamics: H-Fumarate and H-Maleate and Their Conformations. Molecules 2020; 25:E4990. [PMID: 33126573 PMCID: PMC7663696 DOI: 10.3390/molecules25214990] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/23/2020] [Revised: 10/18/2020] [Accepted: 10/24/2020] [Indexed: 11/30/2022] Open
Abstract
We explore the structure of two ionic liquids based on the choline cation and the monoanion of the maleic acid. We consider two isomers of the anion (H-maleate, the cis-isomer and H-fumarate, the trans-isomer) having different physical chemical properties. H-maleate assumes a closed structure and forms a strong intramolecular hydrogen bond whereas H-fumarate has an open structure. X-ray diffraction, infrared and Raman spectroscopy and molecular dynamics have been used to provide a reliable picture of the interactions which characterize the structure of the fluids. All calculations indicate that the choline cation prefers to connect mainly to the carboxylate group through OH⋯O interactions in both the compounds and orient the charged head N(CH3)3+ toward the negative portion of the anion. However, the different structure of the two anions affects the distribution of the ionic components in the fluid. The trans conformation of H-fumarate allows further interactions between anions through COOH and CO2- groups whereas intramolecular hydrogen bonding in H-maleate prevents this association. Our theoretical findings have been validated by comparing them with experimental X-ray data and infrared and Raman spectra.
Collapse
Affiliation(s)
- Simone Di Muzio
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, I-67100 L’Aquila, Italy; (S.D.M.); (F.F.); (M.N.); (P.B.)
| | - Fabio Ramondo
- Department of Chemistry, University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy;
| | - Lorenzo Gontrani
- Department of Chemistry, University of Rome La Sapienza, P.le A. Moro 5, 00185 Rome, Italy;
| | - Francesco Ferella
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, I-67100 L’Aquila, Italy; (S.D.M.); (F.F.); (M.N.); (P.B.)
- INFN, Gran Sasso National Laboratories, I-67100 Assergi (AQ), Italy
| | - Michele Nardone
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, I-67100 L’Aquila, Italy; (S.D.M.); (F.F.); (M.N.); (P.B.)
| | - Paola Benassi
- Department of Physical and Chemical Sciences, University of L’Aquila, Via Vetoio, I-67100 L’Aquila, Italy; (S.D.M.); (F.F.); (M.N.); (P.B.)
| |
Collapse
|
12
|
Wang YL, Li B, Sarman S, Mocci F, Lu ZY, Yuan J, Laaksonen A, Fayer MD. Microstructural and Dynamical Heterogeneities in Ionic Liquids. Chem Rev 2020; 120:5798-5877. [PMID: 32292036 PMCID: PMC7349628 DOI: 10.1021/acs.chemrev.9b00693] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2019] [Indexed: 12/11/2022]
Abstract
Ionic liquids (ILs) are a special category of molten salts solely composed of ions with varied molecular symmetry and charge delocalization. The versatility in combining varied cation-anion moieties and in functionalizing ions with different atoms and molecular groups contributes to their peculiar interactions ranging from weak isotropic associations to strong, specific, and anisotropic forces. A delicate interplay among intra- and intermolecular interactions facilitates the formation of heterogeneous microstructures and liquid morphologies, which further contributes to their striking dynamical properties. Microstructural and dynamical heterogeneities of ILs lead to their multifaceted properties described by an inherent designer feature, which makes ILs important candidates for novel solvents, electrolytes, and functional materials in academia and industrial applications. Due to a massive number of combinations of ion pairs with ion species having distinct molecular structures and IL mixtures containing varied molecular solvents, a comprehensive understanding of their hierarchical structural and dynamical quantities is of great significance for a rational selection of ILs with appropriate properties and thereafter advancing their macroscopic functionalities in applications. In this review, we comprehensively trace recent advances in understanding delicate interplay of strong and weak interactions that underpin their complex phase behaviors with a particular emphasis on understanding heterogeneous microstructures and dynamics of ILs in bulk liquids, in mixtures with cosolvents, and in interfacial regions.
Collapse
Affiliation(s)
- Yong-Lei Wang
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Bin Li
- School
of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, P. R. China
| | - Sten Sarman
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy
| | - Zhong-Yuan Lu
- State
Key Laboratory of Supramolecular Structure and Materials, Institute
of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China
| | - Jiayin Yuan
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Aatto Laaksonen
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
- State
Key Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Centre of
Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, 41A, 700487 Iasi, Romania
- Department
of Engineering Sciences and Mathematics, Division of Energy Science, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Michael D. Fayer
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
13
|
Campetella M, Cappelluti F, Gontrani L. Medium range interactions evidences in compounds with aliphatic lateral chain: 1-pentanoic acid, 1-pentanol and pentylammonium nitrate as test cases. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.136738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/28/2022]
|
14
|
Ramondo F, Gontrani L, Campetella M. Coupled hydroxyl and ether functionalisation in EAN derivatives: the effect of hydrogen bond donor/acceptor groups on the structural heterogeneity studied with X-ray diffractions and fixed charge/polarizable simulations. Phys Chem Chem Phys 2019; 21:11464-11475. [PMID: 31112158 DOI: 10.1039/c9cp00571d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/21/2022]
Abstract
We present a study by energy-dispersive X-ray diffraction of liquid 2-(2-hydroxyethoxy)ethan-1-ammonium nitrate, NH3CH2CH2(OCH2CH2OH)+NO3- (22HHEAN). This ionic liquid is derived from the parent ethylammonium nitrate (EAN) with an ether link in the chain and a hydroxyl group in the terminal position. The absence of peaks at low-q values in the experimental diffraction curve indicates that the added polar groups and the high conformational isomerism of the cations alter strongly the nanosegregation of the parent EAN liquid. Aggregation between ionic species may involve hydrogen bonding between cations and anions and a variety of intermolecular hydrogen bonds between cations. Diffraction patterns are compared with the results of molecular dynamics simulations with two different force fields: the fixed point charge force field (GAFF) with different charge scaling protocols and the polarizable AMOEBA force field. Most point charge models lead to the appearance of a quite evident low q-peak which decreases gradually, when the percentage and type of the scaling (uniform vs. non-uniform) are increased. In the polarisable model and in the model where only anion charges are scaled to 20%, instead, the pre-peak is absent in agreement with our experiments.
Collapse
Affiliation(s)
- Fabio Ramondo
- Department of Physical and Chemical Sciences, University of L'Aquila, Via Vetoio I-67100, L'Aquila, Italy
| | - Lorenzo Gontrani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi, 2, I-40126 Bologna, Italy. and Department of Chemistry, University "La Sapienza", Roma Piazzale Aldo Moro 5, I-00185, Roma, Italy
| | - Marco Campetella
- Department of Chemistry, University "La Sapienza", Roma Piazzale Aldo Moro 5, I-00185, Roma, Italy and Chimie ParisTech, PSL Research University, CNRS, Institut de Recherche de Chimie Paris, F-75005 Paris, France
| |
Collapse
|
15
|
Abdurrokhman I, Elamin K, Danyliv O, Hasani M, Swenson J, Martinelli A. Protic Ionic Liquids Based on the Alkyl-Imidazolium Cation: Effect of the Alkyl Chain Length on Structure and Dynamics. J Phys Chem B 2019; 123:4044-4054. [PMID: 30995045 DOI: 10.1021/acs.jpcb.9b01274] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/31/2022]
Abstract
Protic ionic liquids are known to form extended hydrogen-bonded networks that can lead to properties different from those encountered in the aprotic analogous liquids, in particular with respect to the structure and transport behavior. In this context, the present paper focuses on a wide series of 1-alkyl-imidazolium bis(trifluoromethylsulfonyl)imide ionic liquids, [HC nIm][TFSI], with the alkyl chain length ( n) on the imidazolium cation varying from ethyl ( n = 2) to dodecyl ( n = 12). A combination of several methods, such as vibrational spectroscopy, wide-angle X-ray scattering (WAXS), broadband dielectric spectroscopy, and 1H NMR spectroscopy, is used to understand the correlation between local cation-anion coordination, nature of nanosegregation, and transport properties. The results indicate the propensity of the -NH site on the cation to form stronger H-bonds with the anion as the alkyl chain length increases. In addition, the position and width of the scattering peak q1 (or the pre-peak), resolved by WAXS and due to the nanosegregation of the polar from the nonpolar domains, are clearly dependent on the alkyl chain length. However, we find no evidence from pulsed-field gradient NMR of a proton motion decoupled from molecular diffusion, hypothesized to be facilitated by the longer N-H bonds localized in the segregated ionic domains. Finally, for all protic ionic liquids investigated, the ionic conductivity displays a Vogel-Fulcher-Tammann dependence on inverse temperature, with an activation energy Ea that also depends on the alkyl chain length, although not strictly linearly.
Collapse
|
16
|
Campetella M, Mariani A, Sadun C, Wu B, Castner EW, Gontrani L. Structure and dynamics of propylammonium nitrate-acetonitrile mixtures: An intricate multi-scale system probed with experimental and theoretical techniques. J Chem Phys 2018; 148:134507. [PMID: 29626911 DOI: 10.1063/1.5021868] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/05/2023] Open
Abstract
In this article, we report the study of structural and dynamical properties for a series of acetonitrile/propylammonium nitrate mixtures as a function of their composition. These systems display an unusual increase in intensity in their X-ray diffraction patterns in the low-q regime, and their 1H-NMR diffusion-ordered NMR spectroscopy (DOSY) spectra display unusual diffusivities. However, the magnitude of both phenomena for mixtures of propylammonium nitrate is smaller than those observed for ethylammonium nitrate mixtures with the same cosolvent, suggesting that the cation alkyl tail plays an important role in these observations. The experimental X-ray scattering data are compared with the results of molecular dynamics simulations, including both ab initio studies used to interpret short-range interactions and classical simulations to describe longer range interactions. The higher level calculations highlight the presence of a strong hydrogen bond network within the ionic liquid, only slightly perturbed even at high acetonitrile concentration. These strong interactions lead to the symmetry breaking of the NO3- vibrations, with a splitting of about 88 cm-1 in the ν3 antisymmetric stretch. The classical force field simulations use a greater number of ion pairs, but are not capable of fully describing the longest range interactions, although they do successfully account for the observed concentration trend, and the analysis of the models confirms the nano-inhomogeneity of these kinds of samples.
Collapse
Affiliation(s)
- Marco Campetella
- Institut de Recherche de Chimie Paris, CNRS, PSL Research University, Chimie ParisTech, F-75005 Paris, France
| | - Alessandro Mariani
- Beamline ID02, ESRF-European Synchrotron Radiation Facility, 71 Avenue des Martyrs, F-38000 Grenoble, France
| | - Claudia Sadun
- Università degli Studi di Roma "La Sapienza," P. le Aldo Moro 5, I-00185 Roma, Italy
| | - Boning Wu
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Edward W Castner
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, New Jersey 08854, USA
| | - Lorenzo Gontrani
- Università degli Studi di Roma "La Sapienza," P. le Aldo Moro 5, I-00185 Roma, Italy
| |
Collapse
|
17
|
Campetella M, Le Donne A, Daniele M, Gontrani L, Lupi S, Bodo E, Leonelli F. Hydrogen Bonding Features in Cholinium-Based Protic Ionic Liquids from Molecular Dynamics Simulations. J Phys Chem B 2018; 122:2635-2645. [DOI: 10.1021/acs.jpcb.7b12455] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marco Campetella
- Chemistry Department, University of Rome “La Sapienza”, Rome, Italy
| | - Andrea Le Donne
- Chemistry Department, University of Rome “La Sapienza”, Rome, Italy
| | | | - Lorenzo Gontrani
- Chemistry Department, University of Rome “La Sapienza”, Rome, Italy
| | - Stefano Lupi
- CNR-IOM and Department of Physics, University of Rome “La Sapienza”, Rome, Italy
| | - Enrico Bodo
- Chemistry Department, University of Rome “La Sapienza”, Rome, Italy
| | | |
Collapse
|
18
|
|
19
|
A structural and theoretical study of the alkylammonium nitrates forefather: Liquid methylammonium nitrate. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
|
20
|
Kachmar A, Carignano M, Laino T, Iannuzzi M, Hutter J. Mapping the Free Energy of Lithium Solvation in the Protic Ionic Liquid Ethylammonuim Nitrate: A Metadynamics Study. CHEMSUSCHEM 2017; 10:3083-3090. [PMID: 28547888 DOI: 10.1002/cssc.201700510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 03/25/2017] [Revised: 05/23/2017] [Indexed: 06/07/2023]
Abstract
Understanding lithium solvation and transport in ionic liquids is important due to their possible application in electrochemical devices. Using first-principles simulations aided by a metadynamics approach we study the free-energy landscape for lithium ions at infinite dilution in ethylammonium nitrate, a protic ionic liquid. We analyze the local structure of the liquid around the lithium cation and obtain a quantitative picture in agreement with experimental findings. Our simulations show that the lowest two free energy minima correspond to conformations with the lithium ion being solvated either by three or four nitrate ions with a transition barrier between them of 0.2 eV. Other less probable conformations having different solvation pattern are also investigated.
Collapse
Affiliation(s)
- Ali Kachmar
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Marcelo Carignano
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Teodoro Laino
- Industry Solutions and Cognitive Computing, IBM Zurich Research Laboratory, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jürg Hutter
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|