1
|
Krstić M, Fink K, Sharapa DI. The Adsorption of Small Molecules on the Copper Paddle-Wheel: Influence of the Multi-Reference Ground State. Molecules 2022; 27:912. [PMID: 35164179 PMCID: PMC8840508 DOI: 10.3390/molecules27030912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
We report a theoretical study of the adsorption of a set of small molecules (C2H2, CO, CO2, O2, H2O, CH3OH, C2H5OH) on the metal centers of the "copper paddle-wheel"-a key structural motif of many MOFs. A systematic comparison between DFT of different rungs, single-reference post-HF methods (MP2, SOS-MP2, MP3, DLPNO-CCSD(T)), and multi-reference approaches (CASSCF, DCD-CAS(2), NEVPT2) is performed in order to find a methodology that correctly describes the complicated electronic structure of paddle-wheel structure together with a reasonable description of non-covalent interactions. Apart from comparison with literature data (experimental values wherever possible), benchmark calculations with DLPNO-MR-CCSD were also performed. Despite tested methods show qualitative agreement in the majority of cases, we showed and discussed reasons for quantitative differences as well as more fundamental problems of specific cases.
Collapse
Affiliation(s)
- Marjan Krstić
- Institute for Theoretical Solid State Physics (TFP), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Str. 1, 76131 Karlsruhe, Germany;
| | - Karin Fink
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany;
| | - Dmitry I. Sharapa
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Lang J, Antalík A, Veis L, Brandejs J, Brabec J, Legeza Ö, Pittner J. Near-Linear Scaling in DMRG-Based Tailored Coupled Clusters: An Implementation of DLPNO-TCCSD and DLPNO-TCCSD(T). J Chem Theory Comput 2020; 16:3028-3040. [PMID: 32275424 DOI: 10.1021/acs.jctc.0c00065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We present a new implementation of density matrix renormalization group based tailored coupled clusters method (TCCSD), which employs the domain-based local pair natural orbital approach (DLPNO). Compared to the previous local pair natural orbital (LPNO) version of the method, the new implementation is more accurate, offers more favorable scaling, and provides more consistent behavior across the variety of systems. On top of the singles and doubles, we include the perturbative triples correction (T), which is able to retrieve even more dynamic correlation. The methods were tested on three systems: tetramethyleneethane, oxo-Mn(Salen), and iron(II)-porphyrin model. The first two were revisited to assess the performance with respect to LPNO-TCCSD. For oxo-Mn(Salen), we retrieved between 99.8 and 99.9% of the total canonical correlation energy which is an improvement of 0.2% over the LPNO version in less than 63% of the total LPNO runtime. Similar results were obtained for iron(II)-porphyrin. When the perturbative triples correction was employed, irrespective of the active space size or system, the obtained energy differences between two spin states were within the chemical accuracy of 1 kcal/mol using the default DLPNO settings.
Collapse
Affiliation(s)
- Jakub Lang
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Sciences, Charles University, Albertov 6, 128 00 Prague 2, Czech Republic
| | - Andrej Antalík
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jan Brandejs
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic.,Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague 2, Czech Republic
| | - Jiří Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
3
|
Antalík A, Veis L, Brabec J, Demel O, Legeza Ö, Pittner J. Toward the efficient local tailored coupled cluster approximation and the peculiar case of oxo-Mn(Salen). J Chem Phys 2019; 151:084112. [PMID: 31470730 DOI: 10.1063/1.5110477] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
We introduce a new implementation of the coupled cluster method with single and double excitations tailored by the matrix product state wave functions (DMRG-TCCSD), which employs the local pair natural orbital (LPNO) approach. By exploiting locality in the coupled cluster stage of the calculation, we were able to remove some of the limitations that hindered the application of the canonical version of the method to larger systems and/or with larger basis sets. We assessed the accuracy of the approximation using two systems: tetramethyleneethane (TME) and oxo-Mn(Salen). Using the default cut-off parameters, we were able to recover over 99.7% and 99.8% of the canonical correlation energy for the triplet and singlet state of TME, respectively. In the case of oxo-Mn(Salen), we found that the amount of retrieved canonical correlation energy depends on the size of the complete active space (CAS)-we retrieved over 99.6% for the larger 27 orbital CAS and over 99.8% for the smaller 22 orbital CAS. The use of LPNO-TCCSD allowed us to perform these calculations up to quadruple-ζ basis set, amounting to 1178 basis functions. Moreover, we examined dependence of the ground state of oxo-Mn(Salen) on the CAS composition. We found that the inclusion of 4dxy orbital plays an important role in stabilizing the singlet state at the DMRG-CASSCF level via double-shell effect. However, by including dynamic correlation, the ground state was found to be triplet regardless of the size of the basis set or the composition of CAS, which is in agreement with previous findings by canonical DMRG-TCCSD in smaller basis.
Collapse
Affiliation(s)
- Andrej Antalík
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Libor Veis
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Jiří Brabec
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Ondřej Demel
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Örs Legeza
- Strongly Correlated Systems "Lendület" Research Group, Wigner Research Centre for Physics, H-1525 Budapest, Hungary
| | - Jiří Pittner
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
4
|
Lang J, Brabec J, Saitow M, Pittner J, Neese F, Demel O. Perturbative triples correction to domain-based local pair natural orbital variants of Mukherjee's state specific coupled cluster method. Phys Chem Chem Phys 2019; 21:5022-5038. [PMID: 30762044 DOI: 10.1039/c8cp03577f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this article we report an implementation of the perturbative triples correction to Mukherjee's state-specific multireference coupled cluster method based on the domain-based pair natural orbital approach (DLPNO-MkCC). We tested the performance of DLPNO-MkCCSD(T) in calculations involving tetramethyleneethane and isomers of naphthynes. These tests show that more than 97% of triples energy was recovered with respect to the canonical MkCCSD(T) method, which together with the DLPNO-MkCCSD part accounts for about 99.70-99.85% of the total correlation energy. The applicability of the method was demonstrated on calculations of singlet-triplet gaps for several large systems: triangulene, dynemicin A, and a beryllium complex.
Collapse
Affiliation(s)
- Jakub Lang
- J. Heyrovský Institute of Physical Chemistry, v.v.i., Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8, Czech Republic.
| | | | | | | | | | | |
Collapse
|
5
|
Coughtrie DJ, Giereth R, Kats D, Werner HJ, Köhn A. Embedded Multireference Coupled Cluster Theory. J Chem Theory Comput 2018; 14:693-709. [DOI: 10.1021/acs.jctc.7b01144] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- David J. Coughtrie
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Robin Giereth
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Daniel Kats
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Hans-Joachim Werner
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Andreas Köhn
- Institute for Theoretical
Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Pradhan R, Lourderaj U. Quantum chemical investigation of the thermal denitrogenation of 1-pyrazoline. Phys Chem Chem Phys 2017; 19:27468-27477. [DOI: 10.1039/c7cp05320g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CASPT2//CASSCF(12,12) calculations reveal that a synchronous path is favourable for the denitrogenation of 1-pyrazoline.
Collapse
Affiliation(s)
- Renuka Pradhan
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER) Bhubaneswar
- HBNI
- Khurda
- India
| | - Upakarasamy Lourderaj
- School of Chemical Sciences
- National Institute of Science Education and Research (NISER) Bhubaneswar
- HBNI
- Khurda
- India
| |
Collapse
|