1
|
Smyser KE, White A, Sharma S. Use of Multigrids to Reduce the Cost of Performing Interpolative Separable Density Fitting. J Phys Chem A 2024; 128:7451-7461. [PMID: 39186251 DOI: 10.1021/acs.jpca.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
In this article, we present an interpolative separable density fitting (ISDF)-based algorithm to calculate the exact exchange in periodic mean field calculations. In the past, decomposing the two-electron integrals into the tensor hypercontraction (THC) form using ISDF was the most expensive step of the entire mean field calculation. Here, we show that by using a multigrid-ISDF algorithm, both the memory and the CPU cost of this step can be reduced. The CPU cost is brought down from cubic scaling to quadratic scaling with a low computational prefactor which reduces the cost by almost 2 orders of magnitude. Thus, in the new algorithm, the cost of performing ISDF is largely negligible compared to other steps. Along with the CPU cost, the memory cost of storing the factorized two-electron integrals is also reduced by a factor of up to 35. With the current algorithm, we can perform Hartree-Fock calculations on a diamond supercell containing more than 17,000 basis functions and more than 1500 electrons on a single node with no disk usage. For this calculation, the cost of constructing the exchange matrix is only a factor of 4 slower than the cost of diagonalizing the Fock matrix. Augmenting our approach with linear scaling algorithms can further speed up the calculations.
Collapse
Affiliation(s)
- Kori E Smyser
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| | - Alec White
- Quantum Simulation Technologies, Inc., Boston ,Massachusetts02135, United States
| | - Sandeep Sharma
- Department of Chemistry, University of Colorado, Boulder, Colorado 80302, United States
| |
Collapse
|
2
|
Poole D, Williams-Young DB, Jiang A, Glick ZL, Sherrill CD. A modular, composite framework for the utilization of reduced-scaling Coulomb and exchange construction algorithms: Design and implementation. J Chem Phys 2024; 161:052503. [PMID: 39092936 DOI: 10.1063/5.0216760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Multiple algorithms exist for calculating Coulomb (J) or exchange (K) contributions to Fock-like matrices, and it is beneficial to develop a framework that allows the seamless integration and combination of different J and K construction algorithms. In Psi4, we have implemented the "CompositeJK" formalism for this purpose. CompositeJK allows for the combination of any J and K construction algorithms for any quantum chemistry method formulated in terms of J-like or K-like matrices (including, but not limited to, Hartree-Fock and density functional theory) in a highly modular and intuitive fashion, which is simple to utilize for both developers and users. Using the CompositeJK framework, Psi4 was interfaced to the sn-LinK implementation in the GauXC library, adding the first instance of noncommercial graphics processing unit (GPU) support for the construction of Fock matrix elements to Psi4. On systems with hundreds of atoms, the interface to the CPU sn-LinK implementation displays a higher performance than all the alternative JK construction methods available in Psi4, with up to x2.8 speedups compared to existing Psi4JK implementations. The GPU sn-LinK implementation, harnessing the power of GPUs, improves the observed performance gains to up to x7.0.
Collapse
Affiliation(s)
- David Poole
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - David B Williams-Young
- Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Andy Jiang
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - Zachary L Glick
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | - C David Sherrill
- Center for Computational Molecular Science and Technology, School of Chemistry and Biochemistry, School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| |
Collapse
|
3
|
Spadetto E, Philipsen PHT, Förster A, Visscher L. Toward Pair Atomic Density Fitting for Correlation Energies with Benchmark Accuracy. J Chem Theory Comput 2023; 19:1499-1516. [PMID: 36787494 PMCID: PMC10018742 DOI: 10.1021/acs.jctc.2c01201] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Indexed: 02/16/2023]
Abstract
Pair atomic density fitting (PADF) has been identified as a promising strategy to reduce the scaling with system size of quantum chemical methods for the calculation of the correlation energy like the direct random-phase approximation (RPA) or second-order Møller-Plesset perturbation theory (MP2). PADF can however introduce large errors in correlation energies as the two-electron interaction energy is not guaranteed to be bounded from below. This issue can be partially alleviated by using very large fit sets, but this comes at the price of reduced efficiency and having to deal with near-linear dependencies in the fit set. One posibility is to use global density fitting (DF), but in this work, we introduce an alternative methodology to overcome this problem that preserves the intrinsically favorable scaling of PADF. We first regularize the Fock matrix by projecting out parts of the basis set which gives rise to orbital products that are hard to describe by PADF. After having thus obtained a reliable self-consistent field solution, we then also apply this projector to the orbital coefficient matrix to improve the precision of PADF-MP2 and PADF-RPA. We systematically assess the accuracy of this new approach in a numerical atomic orbital framework using Slater type orbitals (STO) and correlation consistent Gaussian type basis sets up to quintuple-ζ quality for systems with more than 200 atoms. For the small and medium systems in the S66 database we show the maximum deviation of PADF-MP2 and PADF-RPA relative correlation energies to DF-MP2 and DF-RPA reference results to be 0.07 and 0.14 kcal/mol, respectively. When the new projector method is used, the errors only slightly increase for large molecules and also when moderately sized fit sets are used the resulting errors are well under control. Finally, we demonstrate the computational efficiency of our algorithm by calculating the interaction energies of large, non-covalently bound complexes with more than 1000 atoms and 20000 atomic orbitals at the RPA@PBE/CC-pVTZ level of theory.
Collapse
Affiliation(s)
- Edoardo Spadetto
- Software
for Chemistry and Materials NV, NL-1081HV Amsterdam, The Netherlands
| | | | - Arno Förster
- Software
for Chemistry and Materials NV, NL-1081HV Amsterdam, The Netherlands
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical
Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Sharma S, White AF, Beylkin G. Fast Exchange with Gaussian Basis Set Using Robust Pseudospectral Method. J Chem Theory Comput 2022; 18:7306-7320. [PMID: 36417710 DOI: 10.1021/acs.jctc.2c00720] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In this article, we present an algorithm to efficiently evaluate the exchange matrix in periodic systems when a Gaussian basis set with pseudopotentials is used. The usual algorithm for evaluating exchange matrix scales cubically with the system size because one has to perform O(N2) fast Fourier transform (FFT). Here, we introduce an algorithm that retains the cubic scaling but reduces the prefactor significantly by eliminating the need to do FFTs during each exchange build. This is accomplished by representing the products of Gaussian basis function using a linear combination of an auxiliary basis the number of which scales linearly with the size of the system. We store the potential due to these auxiliary functions in memory, which allows us to obtain the exchange matrix without the need to do FFT, albeit at the cost of additional memory requirement. Although the basic idea of using auxiliary functions is not new, our algorithm is cheaper due to a combination of three ingredients: (a) we use a robust pseudospectral method that allows us to use a relatively small number of auxiliary basis to obtain high accuracy; (b) we use occ-RI exchange, which eliminates the need to construct the full exchange matrix; and (c) we use the (interpolative separable density fitting) ISDF algorithm to construct these auxiliary basis sets that are used in the robust pseudospectral method. The resulting algorithm is accurate, and we note that the error in the final energy decreases exponentially rapidly with the number of auxiliary functions.
Collapse
Affiliation(s)
- Sandeep Sharma
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado80309, United States
| | - Alec F White
- Quantum Simulation Technologies, Inc., Boston, Massachusetts02135, United States
| | - Gregory Beylkin
- Department of Applied Mathematics, University of Colorado, Boulder, Colorado80309, United States
| |
Collapse
|
5
|
Förster A, Visscher L. Low-Order Scaling G0W0 by Pair Atomic Density Fitting. J Chem Theory Comput 2020; 16:7381-7399. [PMID: 33174743 PMCID: PMC7726916 DOI: 10.1021/acs.jctc.0c00693] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Indexed: 12/18/2022]
Abstract
We derive a low-scaling G0W0 algorithm for molecules using pair atomic density fitting (PADF) and an imaginary time representation of the Green's function and describe its implementation in the Slater type orbital (STO)-based Amsterdam density functional (ADF) electronic structure code. We demonstrate the scalability of our algorithm on a series of water clusters with up to 432 atoms and 7776 basis functions and observe asymptotic quadratic scaling with realistic threshold qualities controlling distance effects and basis sets of triple-ζ (TZ) plus double polarization quality. Also owing to a very small prefactor, a G0W0 calculation for the largest of these clusters takes only 240 CPU hours with these settings. We assess the accuracy of our algorithm for HOMO and LUMO energies in the GW100 database. With errors of 0.24 eV for HOMO energies on the quadruple-ζ level, our implementation is less accurate than canonical all-electron implementations using the larger def2-QZVP GTO-type basis set. Apart from basis set errors, this is related to the well-known shortcomings of the GW space-time method using analytical continuation techniques as well as to numerical issues of the PADF approach of accurately representing diffuse atomic orbital (AO) products. We speculate that these difficulties might be overcome by using optimized auxiliary fit sets with more diffuse functions of higher angular momenta. Despite these shortcomings, for subsets of medium and large molecules from the GW5000 database, the error of our approach using basis sets of TZ and augmented double-ζ (DZ) quality is decreasing with system size. On the augmented DZ level, we reproduce canonical, complete basis set limit extrapolated reference values with an accuracy of 80 meV on average for a set of 20 large organic molecules. We anticipate our algorithm, in its current form, to be very useful in the study of single-particle properties of large organic systems such as chromophores and acceptor molecules.
Collapse
Affiliation(s)
- Arno Förster
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| | - Lucas Visscher
- Theoretical Chemistry, Vrije Universiteit, De Boelelaan 1083, NL-1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Wang X, Lewis CA, Valeev EF. Efficient evaluation of exact exchange for periodic systems via concentric atomic density fitting. J Chem Phys 2020; 153:124116. [DOI: 10.1063/5.0016856] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xiao Wang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
- Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA
| | - Cannada A. Lewis
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
7
|
Peng C, Lewis CA, Wang X, Clement MC, Pierce K, Rishi V, Pavošević F, Slattery S, Zhang J, Teke N, Kumar A, Masteran C, Asadchev A, Calvin JA, Valeev EF. Massively Parallel Quantum Chemistry: A high-performance research platform for electronic structure. J Chem Phys 2020; 153:044120. [DOI: 10.1063/5.0005889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chong Peng
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Cannada A. Lewis
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Xiao Wang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | - Karl Pierce
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Varun Rishi
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Fabijan Pavošević
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Samuel Slattery
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Jinmei Zhang
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Nakul Teke
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Ashutosh Kumar
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Conner Masteran
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Andrey Asadchev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Justus A. Calvin
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - Edward F. Valeev
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|