1
|
Kokoouline V, Alijah A, Tyuterev V. Lifetimes and decay mechanisms of isotopically substituted ozone above the dissociation threshold: matching quantum and classical dynamics. Phys Chem Chem Phys 2024; 26:4614-4628. [PMID: 38251711 DOI: 10.1039/d3cp04286c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Energies and lifetimes of vibrational resonances were computed for 18O-enriched isotopologue 50O3 = {16O16O18O and 16O18O16O} of the ozone molecule using hyperspherical coordinates and the method of complex absorbing potential. Various types of scattering resonances were identified, including roaming OO-O rotational states, the series corresponding to continuation of bound vibrational resonances of highly excited bending or symmetric stretching vibrational modes. Such a series become metastable above the dissociation limit. The coupling between the vibrationally excited O2 fragment and rotational roaming gives rise to Feshbach type resonances in ozone. Different paths for the formation and decay of symmetric 16O18O16O and asymmetric species 16O16O18O were also identified. The symmetry properties of the total rovibronic wave functions of the 18O-enriched isotopologues are discussed in the context of allowed dissociation channels.
Collapse
Affiliation(s)
| | - Alexander Alijah
- Groupe de Spectrometrie Moléculaire et Atmospherique, UMR CNRS 7331, University of Reims Champagne-Ardenne, Reims Cedex 2, F-51687, France
| | - Vladimir Tyuterev
- Laboratory of Molecular Quantum Mechanics and Radiative transfer, Tomsk State University, Tomsk, Russia
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, Tomsk, 634055, Russia
| |
Collapse
|
2
|
Pourestarabadi S, Dehestani M. Non-adiabatic coupling in the potential energy surfaces of SO 2 molecule. Phys Chem Chem Phys 2023; 25:24526-24538. [PMID: 37661660 DOI: 10.1039/d3cp02127k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
To investigate the potential energy surfaces and the coupling between the adiabatic states of SO2 molecules, it is necessary to consider the non-adiabatic coupling terms (NACTs), where the Born-Oppenheimer approximation breaks down. In this work, we analyze the conical intersections between 1 1A1 and 1 1B2 states (the A' states in Cs symmetry) and 1 1A2 and 1 1B1 states (the A'' states in Cs symmetry) using NACTs and adiabatic-to-diabatic transformation (ADT) angles. Our results confirm reasonable interaction between 1 1A1 and 1 1B2 states and strong interaction between 1 1A2 and 1 1B1 states.
Collapse
Affiliation(s)
- Sedigheh Pourestarabadi
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
- Young Researchers Society, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Dehestani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
3
|
Barbe A, Mikhailenko S, Starikova E, Tyuterev V. High Resolution Infrared Spectroscopy in Support of Ozone Atmospheric Monitoring and Validation of the Potential Energy Function. Molecules 2022; 27:911. [PMID: 35164172 PMCID: PMC8838290 DOI: 10.3390/molecules27030911] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 11/16/2022] Open
Abstract
The first part of this review is a brief reminder of general information concerning atmospheric ozone, particularly related to its formation, destruction, observations of its decrease in the stratosphere, and its increase in the troposphere as a result of anthropogenic actions and solutions. A few words are said about the abandonment of the Airbus project Alliance, which was expected to be the substitute of the supersonic Concorde. This project is over due to the theoretical evaluation of the impact of a fleet in the stratosphere and has been replaced by the A380, which is now operating. The largest part is devoted to calculations and observations of the transitions in the infrared range and their applications for the atmosphere based both on effective models (Hamiltonian, symmetry rules, and dipole moments) and ab initio calculations. The complementarities of the two approaches are clearly demonstrated, particularly for the creation of an exhaustive line list consisting of more than 300,000 lines reaching experimental accuracies (from 0.00004 to 0.001 cm-1) for positions and a sub percent for the intensities in the 10 microns region. This contributes to definitively resolving the issue of the observed discrepancies between line intensity data in different spectral regions: between the infrared and ultraviolet ranges, on the one hand, and between 10 and 5 microns on the other hand. The following section is devoted to the application of recent work to improve the knowledge about the behavior of potential function at high energies. A controversial issue related to the shape of the potential function in the transition state range near the dissociation is discussed.
Collapse
Affiliation(s)
- Alain Barbe
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, UFR Sciences Exactes et Naturelles, CEDEX02, BP 1039-51687 Reims, France;
| | - Semen Mikhailenko
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia; (S.M.); (E.S.)
- Climate and Environmental Physics Laboratory, Ural Federal University, 19, Mira av., 620002 Yekaterinburg, Russia
| | - Evgeniya Starikova
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia; (S.M.); (E.S.)
| | - Vladimir Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, Université de Reims, UFR Sciences Exactes et Naturelles, CEDEX02, BP 1039-51687 Reims, France;
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics SB RAS, 634055 Tomsk, Russia; (S.M.); (E.S.)
- Laboratory of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University, 634050 Tomsk, Russia
| |
Collapse
|
4
|
Kalugina YN, Egorov O, van der Avoird A. Ab initio study of the O 3-N 2 complex: Potential energy surface and rovibrational states. J Chem Phys 2021; 155:054308. [PMID: 34364361 DOI: 10.1063/5.0061749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The formation and destruction of O3 within the Chapman cycle occurs as a result of inelastic collisions with a third body. Since N2 is the most abundant atmospheric molecule, it can be considered as the most typical candidate when modeling energy-transfer dynamics. We report a new ab initio potential energy surface (PES) of the O3-N2 van der Waals complex. The interaction energies were calculated using the explicitly correlated single- and double-excitation coupled cluster method with a perturbative treatment of triple excitations [CCSD(T)-F12a] with the augmented correlation-consistent triple-zeta aug-cc-pVTZ basis set. The five-dimensional PES was analytically represented by an expansion in spherical harmonics up to eighth order inclusive. Along with the global minimum of the complex (De = 348.88 cm-1), with N2 being perpendicular to the O3 plane, six stable configurations were found with a smaller binding energy. This PES was employed to calculate the bound states of the O3-N2 complex with both ortho- and para-N2 for total angular momentum J = 0 and 1, as well as dipole transition probabilities. The nature of the bound states of the O3-oN2 and O3-pN2 species is discussed based on their rovibrational wave functions.
Collapse
Affiliation(s)
- Yulia N Kalugina
- Laboratory of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University 36, Lenin Ave., Tomsk 634050, Russia
| | - Oleg Egorov
- Laboratory of Quantum Mechanics of Molecules and Radiative Processes, Tomsk State University 36, Lenin Ave., Tomsk 634050, Russia
| | - Ad van der Avoird
- Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
5
|
Kokoouline V, Lapierre D, Alijah A, Tyuterev V. Localized and delocalized bound states of the main isotopologue 48O 3 and of 18O-enriched 50O 3 isotopomers of the ozone molecule near the dissociation threshold. Phys Chem Chem Phys 2020; 22:15885-15899. [PMID: 32642747 DOI: 10.1039/d0cp02177f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Knowledge of highly excited rovibrational states of ozone isotopologues is of key importance for modelling the dynamics of exchange reactions, for understanding longstanding problems related to isotopic anomalies of the ozone formation, and for analyses of extra-sensitive laser spectral experiments currently in progress. This work is devoted to new theoretical study of high-energy states for the main isotopologue 48O3 = 16O16O16O and for the family of 18O-enriched isotopomers 50O3 = {16O16O18O, 16O18O16O, 18O16O16O} of the ozone molecule considered using a full-symmetry approach. Energies and wave functions of bound states near the dissociation threshold are computed in hyperspherical coordinates accounting for the permutation symmetry of three identical nuclei in 48O3 and of two identical nuclei in 50O3, using the most accurate potential energy surface available now. The obtained vibrational band centers agree with observed ones with the root-mean-squares deviation of about 1 cm-1, making the results appropriate for assignments and analyses of future experimental spectra. The levels delocalized between the three potential wells of ozone isomers are computed and analyzed. The states situated deep in the three (for 48O3) or two (for 50O3) equivalent potential wells have similar energies with negligible splitting. However, the states situated just below the potential barriers separating the wells, are split due to the tunneling between the wells resulting in the splitting of rovibrational sub-bands. We evaluate the amplitudes of the corresponding effects and consider possible perturbations in vibration-rotation bands due to interactions between three potential wells. Theoretical predictions for the splitting of observable band centers are provided for the first time.
Collapse
Affiliation(s)
| | - David Lapierre
- Groupe de Spectrometrie Moléculaire et Atmospherique, UMR CNRS 7331, University of Reims Champagne-Ardenne, F-51687, Reims Cedex 2, France.
| | - Alexander Alijah
- Groupe de Spectrometrie Moléculaire et Atmospherique, UMR CNRS 7331, University of Reims Champagne-Ardenne, F-51687, Reims Cedex 2, France.
| | - Vladimir Tyuterev
- Groupe de Spectrometrie Moléculaire et Atmospherique, UMR CNRS 7331, University of Reims Champagne-Ardenne, F-51687, Reims Cedex 2, France. and Quamer Laboratory, Tomsk State University, Tomsk, Russia
| |
Collapse
|
6
|
Yuen CH, Lapierre D, Gatti F, Kokoouline V, Tyuterev VG. The Role of Ozone Vibrational Resonances in the Isotope Exchange Reaction 16O 16O + 18O → 18O 16O + 16O: The Time-Dependent Picture. J Phys Chem A 2019; 123:7733-7743. [PMID: 31408343 DOI: 10.1021/acs.jpca.9b06139] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We consider the time-dependent dynamics of the isotope exchange reaction in collisions between an oxygen molecule and an oxygen atom: 16O16O + 18O → 16O18O + 16O. A theoretical approach using the multiconfiguration time-dependent Hartree method was employed to model the time evolution of the reaction. Two potential surfaces available in the literature were used in the calculations, and the results obtained with the two surfaces are compared with each other as well as with results of a previous theoretical time-independent approach. A good agreement for the reaction probabilities with the previous theoretical results is found. Comparing the results obtained using two potential energy surfaces allows us to understand the role of the reef/shoulder-like feature in the minimum energy path of the reaction in the isotope exchange process. Also, it was found that the distribution of final products of the reaction is highly anisotropic, which agrees with experimental observations and, at the same time, suggests that the family of approximated statistical approaches, assuming a randomized distribution over final exit channels, is not applicable to this case.
Collapse
Affiliation(s)
- Chi Hong Yuen
- Department of Physics , University of Central Florida , Orlando , Florida 32816 , United States
| | - David Lapierre
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, UFR Sciences , BP 1039, 51687 Reims Cedex 2 , France
| | - Fabien Gatti
- Institut de Sciences Moléculaires d'Orsay, UMR-CNRS 8214, Université Paris-Sud, Université Paris-Saclay , 91405 Orsay , France
| | - Viatcheslav Kokoouline
- Department of Physics , University of Central Florida , Orlando , Florida 32816 , United States
| | - Vladimir G Tyuterev
- Groupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, UFR Sciences , BP 1039, 51687 Reims Cedex 2 , France.,QUAMER Laboratory , Tomsk State University , 634000 Tomsk , Russia
| |
Collapse
|
7
|
Tyuterev VG, Barbe A, Jacquemart D, Janssen C, Mikhailenko SN, Starikova EN. Ab initio predictions and laboratory validation for consistent ozone intensities in the MW, 10 and 5 μm ranges. J Chem Phys 2019; 150:184303. [DOI: 10.1063/1.5089134] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vl. G. Tyuterev
- Tomsk State Research University, TSU, Tomsk 634050, Russia
- GSMA UMR CNRS 7331, UFR Sciences, Université de Reims, BP 1039, 51687 Reims, France
| | - A. Barbe
- GSMA UMR CNRS 7331, UFR Sciences, Université de Reims, BP 1039, 51687 Reims, France
| | - D. Jacquemart
- MONARIS, Sorbonne Université, CNRS, 75252 Paris, France
| | - C. Janssen
- LERMA-IPSL, Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, 75252 Paris, France
| | - S. N. Mikhailenko
- V.E. Zuev Institute of Atmospheric Optics, SB RAS, Tomsk 634055, Russia
| | - E. N. Starikova
- V.E. Zuev Institute of Atmospheric Optics, SB RAS, Tomsk 634055, Russia
| |
Collapse
|
8
|
Honvault P, Guillon G, Kochanov R, Tyuterev V. Quantum mechanical study of the 16O + 18O18O → 16O18O + 18O exchange reaction: Integral cross sections and rate constants. J Chem Phys 2018; 149:214304. [DOI: 10.1063/1.5053469] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- P. Honvault
- Laboratoire Interdisciplnaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon Cedex, France
| | - G. Guillon
- Laboratoire Interdisciplnaire Carnot de Bourgogne, UMR 6303, CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon Cedex, France
| | - R. Kochanov
- Laboratory of Quantum Mechanics and Radiative Processes, Tomsk State University, Tomsk, Russia
- Harvard-Smithsonian Center for Astrophysics, Atomic and Molecular Physics Division, Cambridge, Massachusetts 02138, USA
| | - V. Tyuterev
- Laboratory of Quantum Mechanics and Radiative Processes, Tomsk State University, Tomsk, Russia
- Groupe de Spectrométrie Moléculaire et Atmosphérique UMR CNRS 7331, UFR Sciences, BP 1039, 51687 Reims Cedex 2, France
| |
Collapse
|