Lu Q, Qiu M, Zhao M, Li Z, Li Y. Modification of NFA-Conjugated Bridges with Symmetric Structures for High-Efficiency Non-Fullerene PSCs.
Polymers (Basel) 2019;
11:E958. [PMID:
31159494 PMCID:
PMC6630734 DOI:
10.3390/polym11060958]
[Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/06/2019] [Accepted: 05/10/2019] [Indexed: 11/17/2022] Open
Abstract
As electron acceptors, non-fullerene molecules can overcome the shortcomings of fullerenes and their derivatives (such as high cost, poor co-solubility, and weak light absorption). The photoelectric properties of two potential non-fullerene polymer solar cells (PSCs) PBDB-T:IF-TN (PB:IF) and PBDB-T:IDT-TN (PB:IDT) are studied by density functional theory (DFT) and time-dependent DFT (TD-DFT). Based on the optimized structure of the ground state, the effects of the electron donor (D) and electron acceptor (A) (D/A) interfaces PBDB-T/IF-TN (PB/IF) and PBDB-T/IDT-TN (PB/IDT) are studied by a quantum-chemical method (QM) and Marcus theory. Firstly, for two non-fullerene acceptors (NFAs) IF-TN and IDT-TN, the NFA IDT-TN has better optical absorption ability and better electron transport ability than IF-TN. Secondly, for the D/A interfaces PB/IF and PB/IDT, they both have high optical absorption and electron transfer abilities, and PB/IDT has better optical absorption and lower exciton binding energy. Finally, some important parameters (open-circuit voltage, voltage loss, fill factor, and power conversion efficiency) are calculated and simulated by establishing the theoretical model. From the above analysis, the results show that the non-fullerene PSC PB:IDT has better photoelectric characteristics than PB:IF.
Collapse