1
|
Scheiner S. Does a halogen bond require positive potential on the acid and negative potential on the base? Phys Chem Chem Phys 2023; 25:7184-7194. [PMID: 36815530 DOI: 10.1039/d3cp00379e] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
It is usually expected that formation of a halogen bond (XB) requires that a region of positive electrostatic potential associated with a σ or π-hole on the Lewis acid will interact with the negative potential of the base, either a lone pair or π-bond region. Quantum calculations of model systems suggest this not to be necessary. The placement of electron-withdrawing substituents on the base can reverse the sign of the potential in its lone pair or π-bond region to positive, and this base can nonetheless engage in a XB with the positive σ-hole of a Lewis acid. The reverse scenario is also possible in certain circumstances, as a negatively charged σ-hole can form a XB with the negative lone pair region of a base. Despite these classical Coulombic repulsions, the overall electrostatic interaction is attractive in these XBs, albeit only weakly so. The strengths of these bonds are surprisingly insensitive to changes in the partner molecule. For example, even a wide range in the depth of the σ-hole of the approaching acid yields only a minimal change in the strength of the XB to a base with a positive potential.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University Logan, Utah, USA, 84322-0300.
| |
Collapse
|
2
|
Exploring pentavalent phosphorous bonding in phosphoryl chloride-halocarbon heterodimers at low temperatures and ab initio Computations. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2021.111112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
3
|
Chandra S, Suryaprasad B, Ramanathan N, Sundararajan K. Nitrogen as a pnicogen?: evidence for π-hole driven novel pnicogen bonding interactions in nitromethane-ammonia aggregates using matrix isolation infrared spectroscopy and ab initio computations. Phys Chem Chem Phys 2021; 23:6286-6297. [PMID: 33688865 DOI: 10.1039/d0cp06273a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The role of nitrogen, the first member of the pnicogen group, as an electron donor in hypervalent non-covalent interactions has been established long ago, while observation of its electron accepting capability is still elusive experimentally, and remains quite intriguing, conceptually. In the light of minimal computational exploration of this novel class of pnicogen bonding so far, the present work provides experimental proof with unprecedented clarity, for the existence of N(acceptor)N(donor) interaction using the model nitromethane (NM) molecule with ammonia (AM) as a Lewis base in NM-AM aggregates. The NM-AM dimer, in which the nitrogen atom of NM (as a unique pnicogen) accepts electrons from AM (the traditional electron donor), was synthesized at low temperatures under isolated conditions within inert gas matrixes and was characterized using infrared spectroscopy. The experimental generation of the NM-AM dimer stabilized via NN interaction has strong corroboration from ab initio calculations. Furthermore, confirmation regarding the directional prevalence of this NN interaction over C-HN and N-HO hydrogen bonding is elucidated quantitatively by quantum theory of atoms in molecules (QTAIM), electrostatic potential mapping (ESP), natural bond orbital (NBO), non-covalent interaction (NCI) and energy decomposition (ED) analyses. The present study also allows the extension of σ-hole/π-hole driven interactions to the atoms of the second period, in spite of their low polarizability.
Collapse
Affiliation(s)
- Swaroop Chandra
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - B Suryaprasad
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - N Ramanathan
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| | - K Sundararajan
- Homi Bhabha National Institute, Materials Chemistry & Metal Fuel Cycle Group, Indira Gandhi Center for Atomic Research, Kalpakkam - 603102, Tamil Nadu, India.
| |
Collapse
|
4
|
Sruthi PK, Chandra S, Ramanathan N, Sundararajan K. Unusual blue to red shifting of C-H stretching frequency of CHCl 3 in co-operatively P⋯Cl phosphorus bonded POCl 3-CHCl 3 heterodimers at low temperature inert matrixes. J Chem Phys 2020; 153:174305. [PMID: 33167652 DOI: 10.1063/5.0031162] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Heterodimers of POCl3-CHCl3 were generated in Ne, Ar, and Kr matrixes at low temperatures and were studied using infrared spectroscopy. The remarkable role of co-operative pentavalent phosphorus bonding in the stabilization of the structure dictated by hydrogen bonding is deciphered. The complete potential energy surface of the heterodimer was scanned by ab initio and density functional theory computational methodologies. The hydrogen bond between the phosphoryl oxygen of POCl3 and C-H group of CHCl3 in heterodimers induces a blue-shift in the C-H stretching frequency within the Ne matrix. However, in Ar and Kr matrixes, the C-H stretching frequency is exceptionally red-shifted in stark contrast with Ne. The plausibility of the Fermi resonance by the C-H stretching vibrational mode with higher order modes in the heterodimers has been eliminated as a possible cause within Ar and Kr matrixes by isotopic substitution (CDCl3) experiments. To evaluate the influence of matrixes as a possible cause of red-shift, self-consistent Iso-density polarized continuum reaction field model was applied. This conveyed the important role of the dielectric matrixes in inducing the fascinating vibrational shift from blue (Ne) to red (Ar and Kr) due to the matrix specific transmutation of the POCl3-CHCl3 structure. The heterodimer produced in the Ne matrix possesses a cyclic structure stabilized by hydrogen bonding with co-operative phosphorus bonding, while in Ar and Kr the generation of an acyclic open structure stabilized solely by hydrogen bonding is promoted. Compelling justification regarding the dispersion force based influence of matrix environments in addition to the well-known dielectric influence is presented.
Collapse
Affiliation(s)
- P K Sruthi
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - Swaroop Chandra
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - N Ramanathan
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| | - K Sundararajan
- Homi Bhabha National Institute, Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, India
| |
Collapse
|
5
|
Scheiner S. Versatility of the Cyano Group in Intermolecular Interactions. Molecules 2020; 25:E4495. [PMID: 33007991 PMCID: PMC7582283 DOI: 10.3390/molecules25194495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/17/2022] Open
Abstract
Several cyano groups are added to an alkane, alkene, and alkyne group so as to construct a Lewis acid molecule with a positive region of electrostatic potential in the area adjoining these substituents. Although each individual cyano group produces only a weak π-hole, when two or more such groups are properly situated, they can pool their π-holes into one much more intense positive region that is located midway between them. A NH3 base is attracted to this site, where it forms a strong noncovalent bond to the Lewis acid, amounting to as much as 13.6 kcal/mol. The precise nature of the bonding varies a bit from one complex to the next but typically contains a tetrel bond to the C atoms of the cyano groups or the C atoms of the linkage connecting the C≡N substituents. The placement of the cyano groups on a cyclic system like cyclopropane or cyclobutane has a mild weakening effect upon the binding. Although F is comparable to C≡N in terms of electron-withdrawing power, the replacement of cyano by F substituents substantially weakens the binding with NH3.
Collapse
Affiliation(s)
- Steve Scheiner
- Department of Chemistry and Biochemistry, Utah State University Logan, Logan, UT 84322-0300, USA
| |
Collapse
|
6
|
Grabarz A, Michalczyk M, Zierkiewicz W, Scheiner S. Noncovalent Bonds between Tetrel Atoms. Chemphyschem 2020; 21:1934-1944. [DOI: 10.1002/cphc.202000444] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Grabarz
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Mariusz Michalczyk
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Wiktor Zierkiewicz
- Faculty of Chemistry Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 50-370 Wrocław Poland
| | - Steve Scheiner
- Department of Chemistry and Biochemistry Utah State University Logan Utah 84322-0300 United States
| |
Collapse
|
7
|
Elguero J, Alkorta I, Del Bene JE. Calculated coupling constants 1 J(X-Y) and 1 K(X-Y), and fundamental relationships among the reduced coupling constants for molecules H m X-YH n , with X, Y ═ 1 H, 7 Li, 9 Be, 11 B, 13 C, 15 N, 17 O, 19 F, 31 P, 33 S, and 35 Cl. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2020; 58:727-732. [PMID: 32247293 DOI: 10.1002/mrc.5026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Equation-of-motion coupled-cluster singles and doubles (EOM-CCSD) calculations have been performed to determine coupling constants 1 J(X-Y) for 65 molecules Hm X-YHn , with X,Y ═ 1 H, 7 Li, 9 Be, 11 B, 13 C, 15 N, 17 O, 19 F, 31 P, 33 S, and 35 Cl. The computed 1 J(X-Y) values are in good agreement with available experimental data. The reduced coupling constants 1 K(X-Y) have been derived from 1 J(X-Y) by removing the dependence on the magnetogyric ratios of X and Y. Patterns are found for the reduced coupling constants on a 1 K(X-Y) surface that are related to the positions of X and Y in the periodic table.
Collapse
Affiliation(s)
- José Elguero
- Instituto de Química Médica (CSIC), Madrid, Spain
| | - Ibon Alkorta
- Instituto de Química Médica (CSIC), Madrid, Spain
| | - Janet E Del Bene
- Department of Chemistry, Youngstown State University, Youngstown, Ohio, USA
| |
Collapse
|
8
|
Palanisamy D. A quantum chemical perspective on the potency of electron donors and acceptors in pnicogen bonds (AS...N, P...N, N...N). J Mol Model 2019; 26:11. [PMID: 31834505 DOI: 10.1007/s00894-019-4263-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/17/2019] [Indexed: 11/28/2022]
Abstract
A quantum chemical perspective of 31 structures contains electron acceptors: ASCl3 (arsenic trichloride), PCl3 (phosphorous trichloride) and NCl3 (nitrogen trichloride); forming non-covalent bond with various nitrogen-based electron donors that resulted in pnicogen bonds, AS...N, P...N and N...N were calculated at M062X/def2-QZVP level of theory. Besides the above method, MP2/def2-QZVP and CCSD(T)/def2-QZVP level of theories have also been analysed to have in depth knowledge about the bonds formed. The nature of the bonds was assumed from the electrostatic potential evaluated for all the monomers, where σ hole is positive for all the monomers. The strongest pnicogen bonds are ASCl3-NF2H, PCl3-NCH3CH3CH3 and NCl3-NCH3CH3CH3 having interaction energies as -4.15, -11.58 and -3.25 kcal/mol, respectively, at MP2/def2-QZVP level of theory. Further at CCSD(T)/def2-QZVP level of theory, ASCl3-NF2H and NCl3-NCH3CH3CH3 are found to be the most stable with interaction energies as -3.53 and -2.45 kcal/mol, respectively. The potential energy surface scan was performed for all the stable complexes in order to confirm the existences of energies are true minima. Moreover to confirm the halogen and pnicogen bonds, AIM analysis was carried out. The results from the above factors of pnicogen bond will help crystal growth, material science and engineering community to explore novel materials, which abide for modernization. Graphical abstract PCl3-NCH3CH3CH3 complex with 2.61 Å and pnicogen angle of 178.54° is strong, and interaction energy is -11.58 kcal/mol. Electron donors - ASCl3, PCl3 and NCl3 and electron acceptors -NCH3CH3CH3, NH3C2 and NHCO have strong electrostatic contribution. High and low values of (ρ) ∇2(ρ) reveal the strong and weak pnicogen bond. Schematic representation of acceptors surrounded by its donors and Electrostatic Potential map.
Collapse
Affiliation(s)
- Deepa Palanisamy
- Young Scientist (DST-SERB), Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, 627012, India.
| |
Collapse
|