1
|
Poirier B, Jerke J. Full-dimensional Schrödinger wavefunction calculations using tensors and quantum computers: the Cartesian component-separated approach. Phys Chem Chem Phys 2022; 24:4437-4454. [PMID: 35113096 DOI: 10.1039/d1cp02036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Traditional methods in quantum chemistry rely on Hartree-Fock-based Slater-determinant (SD) representations, whose underlying zeroth-order picture assumes separability by particle. Here, we explore a radically different approach, based on separability by Cartesian component, rather than by particle [J. Jerke and B. Poirier, J. Chem. Phys., 2018, 148, 104101]. The approach appears to be very well suited for 3D grid-based methods in quantum chemistry, and thereby also for so-called "first-quantized" quantum computing. We first present an overview of the approach as implemented on classical computers, including numerical results that justify performance claims. In particular, we perform numerical calculations with four explicit electrons that are equivalent to full-CI matrix diagonalization with nearly 1015 SDs. We then present an implementation for quantum computers for which the number of quantum gates (and to a lesser extent, the number of qubits) can be dramatically reduced, in comparison with other quantum circuitry that has been envisioned for implementing first-quantized "quantum computational chemistry" (QCC).
Collapse
Affiliation(s)
- Bill Poirier
- Department of Chemistry and Biochemistry and Department of Physics, Texas Tech University, P.O. Box 41061, Lubbock, Texas 79409-1061, USA.
| | | |
Collapse
|
3
|
Shepard R, Brozell SR, Larson J, Hovland P, Leyffer S. Wave function analysis with a maximum flow algorithm. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1861351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ron Shepard
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, United States
| | - Scott R. Brozell
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL, United States
| | - Jeffrey Larson
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, United States
| | - Paul Hovland
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, United States
| | - Sven Leyffer
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, United States
| |
Collapse
|
4
|
Lischka H, Shepard R, Müller T, Szalay PG, Pitzer RM, Aquino AJA, Araújo do Nascimento MM, Barbatti M, Belcher LT, Blaudeau JP, Borges I, Brozell SR, Carter EA, Das A, Gidofalvi G, González L, Hase WL, Kedziora G, Kertesz M, Kossoski F, Machado FBC, Matsika S, do Monte SA, Nachtigallová D, Nieman R, Oppel M, Parish CA, Plasser F, Spada RFK, Stahlberg EA, Ventura E, Yarkony DR, Zhang Z. The generality of the GUGA MRCI approach in COLUMBUS for treating complex quantum chemistry. J Chem Phys 2020; 152:134110. [PMID: 32268762 DOI: 10.1063/1.5144267] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The core part of the program system COLUMBUS allows highly efficient calculations using variational multireference (MR) methods in the framework of configuration interaction with single and double excitations (MR-CISD) and averaged quadratic coupled-cluster calculations (MR-AQCC), based on uncontracted sets of configurations and the graphical unitary group approach (GUGA). The availability of analytic MR-CISD and MR-AQCC energy gradients and analytic nonadiabatic couplings for MR-CISD enables exciting applications including, e.g., investigations of π-conjugated biradicaloid compounds, calculations of multitudes of excited states, development of diabatization procedures, and furnishing the electronic structure information for on-the-fly surface nonadiabatic dynamics. With fully variational uncontracted spin-orbit MRCI, COLUMBUS provides a unique possibility of performing high-level calculations on compounds containing heavy atoms up to lanthanides and actinides. Crucial for carrying out all of these calculations effectively is the availability of an efficient parallel code for the CI step. Configuration spaces of several billion in size now can be treated quite routinely on standard parallel computer clusters. Emerging developments in COLUMBUS, including the all configuration mean energy multiconfiguration self-consistent field method and the graphically contracted function method, promise to allow practically unlimited configuration space dimensions. Spin density based on the GUGA approach, analytic spin-orbit energy gradients, possibilities for local electron correlation MR calculations, development of general interfaces for nonadiabatic dynamics, and MRCI linear vibronic coupling models conclude this overview.
Collapse
Affiliation(s)
- Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Ron Shepard
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Thomas Müller
- Institute for Advanced Simulation, Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich 52428, Germany
| | - Péter G Szalay
- ELTE Eötvös Loránd University, Institute of Chemistry, Budapest, Hungary
| | - Russell M Pitzer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adelia J A Aquino
- School of Pharmaceutical Sciences and Technology, Tianjin University, Tianjin 300072, People's Republic of China
| | | | | | - Lachlan T Belcher
- Laser and Optics Research Center, Department of Physics, US Air Force Academy, Colorado 80840, USA
| | | | - Itamar Borges
- Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro, RJ 22290-270, Brazil
| | - Scott R Brozell
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - Emily A Carter
- Office of the Chancellor and Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Box 951405, Los Angeles, California 90095-1405, USA
| | - Anita Das
- Indian Institute of Engineering Science and Technology, Shibpur, Howrah, India
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, Spokane, Washington 99258, USA
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - William L Hase
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Gary Kedziora
- Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, USA
| | - Miklos Kertesz
- Department of Chemistry, Georgetown University, 37th and O Streets, NW, Washington, DC 20057-1227, USA
| | | | - Francisco B C Machado
- Departamento de Química, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, Pennsylvania 19122, USA
| | | | - Dana Nachtigallová
- Institute of Organic Chemistry and Biochemistry v.v.i., The Czech Academy of Sciences, Flemingovo nám. 2, 160610 Prague 6, Czech Republic
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, USA
| | - Markus Oppel
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 17, 1090 Vienna, Austria
| | - Carol A Parish
- Department of Chemistry, Gottwald Center for the Sciences, University of Richmond, Richmond, Virginia 23173, USA
| | - Felix Plasser
- Department of Chemistry, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Rene F K Spada
- Departamento de Física, Instituto Tecnológico de Aeronáutica, São José dos Campos 12228-900, São Paulo, Brazil
| | - Eric A Stahlberg
- Biomedical Informatics and Data Science, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Elizete Ventura
- Universidade Federal da Paraíba, 58059-900 João Pessoa, PB, Brazil
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, USA
| | - Zhiyong Zhang
- Stanford Research Computing Center, Stanford University, 255 Panama Street, Stanford, California 94305, USA
| |
Collapse
|
5
|
Shepard R, Brozell SR, Gidofalvi G. Representations of Shavitt Graphs Within the Graphical Unitary Group Approach. J Comput Chem 2020; 41:129-135. [PMID: 31602656 DOI: 10.1002/jcc.26080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/31/2019] [Indexed: 11/06/2022]
Abstract
The Shavitt graph is a visual representation of a distinct row table (DRT) within the graphical unitary group approach. The DRT is a compact representation of the entire configuration state function expansion space within a molecular electronic structure calculation. Each node of the graph is associated with an integer triple (a k ,b k ,c k ). These integers may be mapped to other quantum numbers, including the number of orbitals, number of electrons, and spin quantum number, and used to display Shavitt graphs in various ways that emphasize different aspects of the expansion space or that reveal different aspects of computed wave functions. The features of several graph density plots are discussed, including electron-hole symmetries and the bonding-antibonding wave function character. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ron Shepard
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439
| | - Scott R Brozell
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439
| | - Gergely Gidofalvi
- Department of Chemistry and Biochemistry, Gonzaga University, 502 E. Boone Ave., Spokane, Washington, 99258-0102
| |
Collapse
|