1
|
Phan A, Stamatakis M, Koh CA, Striolo A. Microscopic insights on clathrate hydrate growth from non-equilibrium molecular dynamics simulations. J Colloid Interface Sci 2023; 649:185-193. [PMID: 37348338 DOI: 10.1016/j.jcis.2023.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/03/2023] [Accepted: 06/06/2023] [Indexed: 06/24/2023]
Abstract
Clathrate hydrates form and grow at interfaces. Understanding the relevant molecular processes is crucial for developing hydrate-based technologies. Many computational studies focus on hydrate growth within the aqueous phase using the 'direct coexistence method', which is limited in its ability to investigate hydrate film growth at hydrocarbon-water interfaces. To overcome this shortcoming, a new simulation setup is presented here, which allows us to study the growth of a methane hydrate nucleus in a system where oil-water, hydrate-water, and hydrate-oil interfaces are all simultaneously present, thereby mimicking experimental setups. Using this setup, hydrate growth is studied here under the influence of two additives, a polyvinylcaprolactam oligomer and sodium dodecyl sulfate, at varying concentrations. Our results confirm that hydrate films grow along the oil-water interface, in general agreement with visual experimental observations; growth, albeit slower, also occurs at the hydrate-water interface, the interface most often interrogated via simulations. The results obtained demonstrate that the additives present within curved interfaces control the solubility of methane in the aqueous phase, which correlates with hydrate growth rate. Building on our simulation insights, we suggest that by combining data for the potential of mean force profile for methane transport across the oil-water interface and for the average free energy required to perturb a flat interface, it is possible to predict the performance of additives used to control hydrate growth. These insights could be helpful to achieve optimal methane storage in hydrates, one of many applications which are attracting significant fundamental and applied interests.
Collapse
Affiliation(s)
- Anh Phan
- School of Chemistry and Chemical Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | - Michail Stamatakis
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK
| | - Carolyn A Koh
- Center for Hydrate Research, Chemical & Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, United States
| | - Alberto Striolo
- Department of Chemical Engineering, University College London, London WC1E 7JE, UK; School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK 73019, United States.
| |
Collapse
|
2
|
Phan A, Striolo A. Chemical Promoter Performance for CO 2 Hydrate Growth: A Molecular Perspective. ENERGY & FUELS : AN AMERICAN CHEMICAL SOCIETY JOURNAL 2023; 37:6002-6011. [PMID: 37114945 PMCID: PMC10123660 DOI: 10.1021/acs.energyfuels.3c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/25/2023] [Indexed: 06/19/2023]
Abstract
Carbon dioxide (CO2) hydrates, which contain a relatively large amount of captured CO2 (almost 30 wt % of CO2 with the balance being water), represent a promising CO2 sequestration option for climate change mitigation. To facilitate CO2 storage via hydrates, using chemical additives during hydrate formation might help to expedite formation/growth rates, provided the additives do not reduce the storage capacity. Implementing atomistic molecular dynamics, we study the impact of aziridine, pyrrolidine, and tetrahydrofuran (THF) on the kinetics of CO2 hydrate growth/dissociation. Our simulations are validated via reproducing experimental data for CO2 and CO2 + THF hydrates at selected operating conditions. The simulated results show that both aziridine and pyrrolidine could perform as competent thermodynamic and kinetic promoters. Furthermore, aziridine seems to exceed pyrrolidine and THF in expediting the CO2 hydrate growth rates under the same conditions. Our analysis unveils direct correlations between the kinetics of CO2 hydrate growth and a combination of the free energy barrier for desorption of CO2 from the hydrate surface and the binding free energy of chemical additives adsorbed at the growing hydrate substrate. The detailed thermodynamic analysis conducted in both hydrate and aqueous phases reveals molecular-level mechanisms by which CO2 hydrate promoters are active, which could help to enable the implementation of CO2 sequestration in hydrate-bearing reservoirs.
Collapse
Affiliation(s)
- Anh Phan
- School
of Chemistry and Chemical Engineering, Faculty of Engineering and
Physical Sciences, University of Surrey, Guildford, Surrey GU2
7XH, U.K.
| | - Alberto Striolo
- Department
of Chemical Engineering, University College
London, London WC1E 7JE, U.K.
- School
of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
3
|
Cabrera-Ramírez A, Prosmiti R. Modeling of Structure H Carbon Dioxide Clathrate Hydrates: Guest-Lattice Energies, Crystal Structure, and Pressure Dependencies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:14832-14842. [PMID: 36110497 PMCID: PMC9465682 DOI: 10.1021/acs.jpcc.2c04140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/26/2022] [Indexed: 06/15/2023]
Abstract
We performed first-principles computations to investigate the complex interplay of molecular interaction energies in determining the lattice structure and stability of CO2@sH clathrate hydrates. Density functional theory computations using periodic boundary conditions were employed to characterize energetics and the key structural properties of the sH clathrate crystal under pressure, such as equilibrium lattice volume and bulk modulus. The performance of exchange-correlation functionals together with recently developed dispersion-corrected schemes was evaluated in describing interactions in both short-range and long-range regions of the potential. Structural relaxations of the fully CO2-filled and empty sH unit cells yield crystal structure and lattice energies, while their compressibility parameters were derived by including the pressure dependencies. The present quantum chemistry computations suggest anisotropy in the compressibility of the sH clathrate hydrates, with the crystal being less compressible along the a-axis direction than along the c-axis one, in distinction from nearly isotropic sI and sII structures. The detailed results presented here give insight into the complex nature of the underlying guest-host interactions, checking earlier assumptions, providing critical tests, and improving estimates. Such entries may eventually lead to better predictions of thermodynamic properties and formation conditions, with a direct impact on emerging hydrate-based technologies.
Collapse
Affiliation(s)
- Adriana Cabrera-Ramírez
- Institute
of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
- Doctoral
Programme in Theoretical Chemistry and Computational Modelling, Doctoral
School, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rita Prosmiti
- Institute
of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
| |
Collapse
|
4
|
Castillo-Borja F, Bravo-Sánchez UI. Molecular Dynamics simulation study of the performance of different inhibitors for methane hydrate growth. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Cabrera-Ramírez A, Arismendi-Arrieta DJ, Valdés Á, Prosmiti R. Exploring CO 2 @sI Clathrate Hydrates as CO 2 Storage Agents by Computational Density Functional Approaches. Chemphyschem 2021; 22:359-369. [PMID: 33368985 DOI: 10.1002/cphc.202001035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 12/21/2022]
Abstract
The formation of specific clathrate hydrates and their transformation at given thermodynamic conditions depends on the interactions between the guest molecule/s and the host water lattice. Understanding their structural stability is essential to control structure-property relations involved in different technological applications. Thus, the energetic aspects relative to CO2 @sI clathrate hydrate are investigated through the computation of the underlying interactions, dominated by hydrogen bonds and van der Waals forces, from first-principles electronic structure approaches. The stability of the CO2 @sI clathrate is evaluated by combining bottom-up and top-down approaches. Guest-free and CO2 guest-filled aperiodic cages, up to the gradually CO2 occupation of the entire sI periodic unit cells were considered. Saturation, cohesive and binding energies for the systems are determined by employing a variety of density functionals and their performance is assessed. The dispersion corrections on the non-covalent interactions are found to be important in the stabilization of the CO2 @sI energies, with the encapsulation of the CO2 into guest-free/empty cage/lattice being always an energetically favorable process for most of the functionals studied. The PW86PBE functional with XDM or D3(BJ) dispersion corrections predicts a lattice constant in accord to the experimental values available, and simultaneously provides a reliable description for the guest-host interactions in the periodic CO2 @sI crystal, as well as the energetics of its progressive single cage occupancy process. It has been found that the preferential orientation of the single CO2 in the large sI crystal cages has a stabilizing effect on the hydrate, concluding that the CO2 @sI structure is favored either by considering the individual building block cages or the complete sI unit cell crystal. Such benchmark and methodology cross-check studies benefit new data-driven model research by providing high-quality training information, with new insights that indicate the underlying factors governing their structure-driven stability, and triggering further investigations for controlling the stabilization of these promising long-term CO2 storage materials.
Collapse
Affiliation(s)
| | - Daniel J Arismendi-Arrieta
- Donostia International Physics Center (DIPC), Paseo Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Álvaro Valdés
- Escuela de Física, Universidad Nacional de Colombia, Sede Medellín, A. A., 3840, Medellíın, Colombia
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006, Madrid, Spain
| |
Collapse
|
6
|
Cabrera-Ramírez A, Yanes-Rodríguez R, Prosmiti R. Computational density-functional approaches on finite-size and guest-lattice effects in CO 2@sII clathrate hydrate. J Chem Phys 2021; 154:044301. [PMID: 33514100 DOI: 10.1063/5.0039323] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We performed first-principles computations to investigate guest-host/host-host effects on the encapsulation of the CO2 molecule in sII clathrate hydrates from finite-size clusters up to periodic 3D crystal lattice systems. Structural and energetic properties were first computed for the individual and first-neighbors clathrate-like sII cages, where highly accurate ab initio quantum chemical methods are available nowadays, allowing in this way the assessment of the density functional (DFT) theoretical approaches employed. The performance of exchange-correlation functionals together with recently developed dispersion-corrected schemes was evaluated in describing interactions in both short-range and long-range regions of the potential. On this basis, structural relaxations of the CO2-filled and empty sII unit cells yield lattice and compressibility parameters comparable to experimental and previous theoretical values available for sII hydrates. According to these data, the CO2 enclathration in the sII clathrate cages is a stabilizing process, either by considering both guest-host and host-host interactions in the complete unit cell or only the guest-water energies for the individual clathrate-like sII cages. CO2@sII clathrates are predicted to be stable whatever the dispersion correction applied and in the case of single cage occupancy are found to be more stable than the CO2@sI structures. Our results reveal that DFT approaches could provide a good reasonable description of the underlying interactions, enabling the investigation of formation and transformation processes as a function of temperature and pressure.
Collapse
Affiliation(s)
| | | | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), CSIC, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
7
|
Cabrera-Ramírez A, Arismendi-Arrieta DJ, Valdés Á, Prosmiti R. Structural Stability of the CO 2 @sI Hydrate: a Bottom-Up Quantum Chemistry Approach on the Guest-Cage and Inter-Cage Interactions. Chemphyschem 2020; 21:2618-2628. [PMID: 33001534 DOI: 10.1002/cphc.202000753] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/30/2020] [Indexed: 12/27/2022]
Abstract
Through reliable first-principles computations, we have demonstrated the impact of CO2 molecules enclathration on the stability of sI clathrate hydrates. Given the delicate balance between the interaction energy components (van der Waals, hydrogen bonds) present on such systems, we follow a systematic bottom-up approach starting from the individual 512 and 512 62 sI cages, up to all existing combinations of two-adjacent sI crystal cages to evaluate how such clathrate-like models perform on the evaluation of the guest-host and first-neighbors inter-cage effects, respectively. Interaction and binding energies of the CO2 occupation of the sI cages were computed using DF-MP2 and different DFT/DFT-D electronic structure methodologies. The performance of selected DFT functionals, together with various semi-classical dispersion corrections schemes, were validated by comparison with reference ab initio DF-MP2 data, as well as experimental data from x-ray and neutron diffraction studies available. Our investigation confirms that the inclusion of the CO2 in the cage/s is an energetically favorable process, with the CO2 molecule preferring to occupy the large 512 62 sI cages compared to the 512 ones. Further, the present results conclude on the rigidity of the water cages arrangements, showing the importance of the inter-cage couplings in the cluster models under study. In particular, the guest-cage interaction is the key factor for the preferential orientation of the captured CO2 molecules in the sI cages, while the inter-cage interactions seems to cause minor distortions with the CO2 guest neighbors interactions do not extending beyond the large 512 62 sI cages. Such findings on these clathrate-like model systems are in accord with experimental observations, drawing a direct relevance to the structural stability of CO2 @sI clathrates.
Collapse
Affiliation(s)
| | - Daniel J Arismendi-Arrieta
- Donostia International Physics Center (DIPC), Paseo, Manuel de Lardizabal 4, 20018, Donostia-San Sebastián, Spain
| | - Álvaro Valdés
- Escuela de Física, Universidad Nacional de Colombia, Sede, A. A., 3840, Medellín, Colombia
| | - Rita Prosmiti
- Institute of Fundamental Physics (IFF-CSIC), Serrano 123, Madrid, Spain
| |
Collapse
|