1
|
Schatz GC, Wodtke AM, Yang X. Spiers Memorial Lecture: New directions in molecular scattering. Faraday Discuss 2024; 251:9-62. [PMID: 38764350 DOI: 10.1039/d4fd00015c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The field of molecular scattering is reviewed as it pertains to gas-gas as well as gas-surface chemical reaction dynamics. We emphasize the importance of collaboration of experiment and theory, from which new directions of research are being pursued on increasingly complex problems. We review both experimental and theoretical advances that provide the modern toolbox available to molecular-scattering studies. We distinguish between two classes of work. The first involves simple systems and uses experiment to validate theory so that from the validated theory, one may learn far more than could ever be measured in the laboratory. The second class involves problems of great complexity that would be difficult or impossible to understand without a partnership of experiment and theory. Key topics covered in this review include crossed-beams reactive scattering and scattering at extremely low energies, where quantum effects dominate. They also include scattering from surfaces, reactive scattering and kinetics at surfaces, and scattering work done at liquid surfaces. The review closes with thoughts on future promising directions of research.
Collapse
Affiliation(s)
- George C Schatz
- Dept of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Alec M Wodtke
- Institute for Physical Chemistry, Georg August University, Goettingen, Germany
- Max Planck Institute for Multidisciplinary Natural Sciences, Goettingen, Germany.
- International Center for the Advanced Studies of Energy Conversion, Georg August University, Goettingen, Germany
| | - Xueming Yang
- Dalian Institute for Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS), part II. Recent noteworthy developments. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121750. [PMID: 36030669 DOI: 10.1016/j.saa.2022.121750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/30/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
This comprehensive survey review compiles noteworthy developments and new concepts of two-dimensional correlation spectroscopy (2D-COS) for the last two years. It covers review articles, books, proceedings, and numerous research papers published on 2D-COS, as well as patent and publication trends. 2D-COS continues to evolve and grow with new significant developments and versatile applications in diverse scientific fields. The healthy, vigorous, and diverse progress of 2D-COS studies in many fields strongly confirms that it is well accepted as a powerful analytical technique to provide an in-depth understanding of systems of interest.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, South Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, South Korea.
| |
Collapse
|
3
|
Park Y, Jin S, Noda I, Jung YM. Continuing progress in the field of two-dimensional correlation spectroscopy (2D-COS): Part III. Versatile applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 284:121636. [PMID: 36229084 DOI: 10.1016/j.saa.2022.121636] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 06/16/2023]
Abstract
In this review, the comprehensive summary of two-dimensional correlation spectroscopy (2D-COS) for the last two years is covered. The remarkable applications of 2D-COS in diverse fields using many types of probes and perturbations for the last two years are highlighted. IR spectroscopy is still the most popular probe in 2D-COS during the last two years. Applications in fluorescence and Raman spectroscopy are also very popularly used. In the external perturbations applied in 2D-COS, variations in concentration, pH, and relative compositions are dramatically increased during the last two years. Temperature is still the most used effect, but it is slightly decreased compared to two years ago. 2D-COS has been applied to diverse systems, such as environments, natural products, polymers, food, proteins and peptides, solutions, mixtures, nano materials, pharmaceuticals, and others. Especially, biological and environmental applications have significantly emerged. This survey review paper shows that 2D-COS is an actively evolving and expanding field.
Collapse
Affiliation(s)
- Yeonju Park
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA.
| | - Young Mee Jung
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Chemistry, and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
4
|
Robertson PA, Heathcote D, Milešević D, Vallance C. Imaging the Dynamics of the Electron Ionization of C 2F 6. J Phys Chem A 2022; 126:7221-7229. [PMID: 36194389 PMCID: PMC9574930 DOI: 10.1021/acs.jpca.2c05606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The dissociation of C2F6 following
electron
ionization at 100 eV has been studied using multimass velocity-map
ion imaging and covariance-map imaging analysis. Single ionization
events form parent C2F6+ cations
in an ensemble of electronic states, which follow a multiplex of relaxation
pathways to eventually dissociate into ionic and neutral fragment
products. We observe CF3+, CF2+, CF+, C+, F+, C2F5+, C2F4+, C2F2+, and C2F+ ions, all of which can reasonably be formed from singly charged
parent ions. Dissociation along the C–C bond typically forms
slow-moving, internally excited products, whereas C–F bond
cleavage is rapid and impulsive. Dissociation from the à state
of the cation preferentially forms C2F5+ and neutral F along a purely repulsive surface. No other
electronic state of the ion will form this product pair at the electron
energies studied in this work, nor do we observe any crossing onto
this surface from higher-lying states of the parent ion. Multiply
charged dissociative pathways are also explored, and we note characteristic
high kinetic energy release channels due to Coulombic repulsion between
charged fragments. The most abundant ion pair we observe is (CF2+, CF+), and we also observe ion pair
signals in the covariance maps associated with almost all possible
C–C bond cleavage products as well as between F+ and each of CF3+, CF2+, CF+, and C+. No covariance between F+ and C2F5+ is observed, implying
that any C2F5+ formed with F+ is unstable and undergoes secondary fragmentation. Dissociation
of multiply charged parent ions occurs via a number of mechanisms,
details of which are revealed by recoil-frame covariance-map imaging.
Collapse
Affiliation(s)
| | - David Heathcote
- Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, U.K
| | - Dennis Milešević
- Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, U.K
| | - Claire Vallance
- Chemistry Research Laboratory, University of Oxford, OxfordOX1 3TA, U.K
| |
Collapse
|
5
|
Crane SW, Lee JWL, Ashfold MNR. Multi-mass velocity map imaging study of the 805 nm strong field ionization of CF 3I. Phys Chem Chem Phys 2022; 24:18830-18840. [PMID: 35904364 DOI: 10.1039/d2cp02449g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multi-mass velocity map imaging studies of charged fragments formed by near infrared strong field ionization together with covariance map image analysis offer a new window through which to explore the dissociation dynamics of several different highly charged parent cations, simultaneously - as demonstrated here for the case of CF3IZ+ cations with charges Z ranging from 1 to at least 5. Previous reports that dissociative ionization of CF3I+ cations yields CF3+, I+ and CF2I+ fragment ions are confirmed, and some of the CF3+ fragments are deduced to undergo secondary loss of one or more neutral F atoms. Covariance map imaging confirms the dominance of CF3+ + I+ products in the photodissociation of CF3I2+ cations and, again, that some of the primary CF3+ photofragments can shed one or more F atoms. Rival charge symmetric dissociation pathways to CF2I+ + F+ and to IF+ + CF2+ products and charge asymmetric dissociations to CF3 + I2+ and CF2I2+ + F products are all also identified. The findings for parent cations with Z ≥ 3 are wholly new. In all cases, the fragment recoil velocity distributions imply dissociation dynamics in which coulombic repulsive forces play a dominant role. The major photoproducts following dissociation of CF3I3+ ions are CF3+ and I2+, with lesser contributions from the rival CF2I2+ + F+ and CF32+ + I+ channels. The CF32+ fragment ion images measured at higher incident intensities show a faster velocity sub-group consistent with their formation in tandem with I2+ fragments, from photodissociation of CF3I4+ parent ions. The measured velocity distributions of the I3+ fragment ions contain features attributable to CF3I5+ photodissociation to CF32+ + I3+ and the images of fragments with mass to charge (m/z) ratio ∼31 show formation of I4+ products that must originate from parent ions with yet higher Z.
Collapse
Affiliation(s)
- Stuart W Crane
- School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| | - Jason W L Lee
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK.,Deutsches Elektronen-Synchrotron DESY, D-22607 Hamburg, Germany
| | | |
Collapse
|
6
|
Heathcote D, Vallance C. Partial and Contingent Recoil-Frame Covariance-Map Imaging. J Phys Chem A 2021; 125:7092-7098. [PMID: 34351156 DOI: 10.1021/acs.jpca.1c04548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When applied to multimass velocity-map imaging data, covariance analysis reveals correlations between different fragment ions formed from the same parent molecule and can provide detailed insights into the fragmentation dynamics. Covariances between the time-of-flight signals for two different ions show that they are formed in the same event, while covariances between their velocity-map images, often referred to as "recoil-frame covariances", reveal details of the correlated motion of the two fragments. In many cases, covariance analysis is complicated by the fact that fluctuations in experimental parameters such as laser or molecular beam intensities can lead to apparent correlations between unrelated ions. In the context of time-of-flight covariance signals, this problem has been overcome by the introduction of partial covariance and contingent covariance approaches. Here, we apply these approaches to recoil-frame covariance-map images. We also demonstrate that in many cases the total signal within each experimental cycle can be used as a useful proxy for independent explicit measurements of the varying experimental parameter(s).
Collapse
Affiliation(s)
- David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
7
|
Vallance C, Heathcote D, Lee JWL. Covariance-Map Imaging: A Powerful Tool for Chemical Dynamics Studies. J Phys Chem A 2021; 125:1117-1133. [DOI: 10.1021/acs.jpca.0c10038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claire Vallance
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - David Heathcote
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Jason W. L. Lee
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|