1
|
Meuwly M. Atomistic Simulations for Reactions and Vibrational Spectroscopy in the Era of Machine Learning─ Quo Vadis?. J Phys Chem B 2022; 126:2155-2167. [PMID: 35286087 DOI: 10.1021/acs.jpcb.2c00212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Atomistic simulations using accurate energy functions can provide molecular-level insight into functional motions of molecules in the gas and in the condensed phase. This Perspective delineates the present status of the field from the efforts of others and some of our own work and discusses open questions and future prospects. The combination of physics-based long-range representations using multipolar charge distributions and kernel representations for the bonded interactions is shown to provide realistic models for the exploration of the infrared spectroscopy of molecules in solution. For reactions, empirical models connecting dedicated energy functions for the reactant and product states allow statistically meaningful sampling of conformational space whereas machine-learned energy functions are superior in accuracy. The future combination of physics-based models with machine-learning techniques and integration into all-purpose molecular simulation software provides a unique opportunity to bring such dynamics simulations closer to reality.
Collapse
Affiliation(s)
- Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
2
|
Abstract
The Menshutkin reaction is a methyl transfer reaction relevant in fields ranging from biochemistry to chemical synthesis. In the present work, the energetics and solvent distributions for NH3+MeCl and Pyr+MeBr reactions were investigated in explicit solvent (water, methanol, acetonitrile, benzene, cyclohexane) by means of reactive molecular dynamics simulations. For polar solvents (water, methanol, and acetonitrile) and benzene, strong to moderate catalytic effects for both reactions were found, whereas apolar and bulky cyclohexane interacts weakly with the solute and does not show pronounced barrier reduction. The calculated barrier heights for the Pyr+MeBr reaction in acetonitrile and cyclohexane are 23.2 and 28.1 kcal/mol compared with experimentally measured barriers of 22.5 and 27.6 kcal/mol, respectively. The solvent distributions change considerably between reactant and TS but comparatively little between TS and product conformations of the solute. As the system approaches the transition state, correlated solvent motions occur which destabilize the solvent-solvent interactions. This is required for the system to surmount the barrier. Finally, it is found that the average solvent-solvent interaction energies in the reactant, TS, and product state geometries are correlated with changes in the solvent structure around the solute.
Collapse
Affiliation(s)
- Haydar Taylan Turan
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Sebastian Brickel
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
3
|
Kilaj A, Wang J, Straňák P, Schwilk M, Rivero U, Xu L, von Lilienfeld OA, Küpper J, Willitsch S. Conformer-specific polar cycloaddition of dibromobutadiene with trapped propene ions. Nat Commun 2021; 12:6047. [PMID: 34663806 PMCID: PMC8523519 DOI: 10.1038/s41467-021-26309-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Diels–Alder cycloadditions are efficient routes for the synthesis of cyclic organic compounds. There has been a long-standing discussion whether these reactions proceed via stepwise or concerted mechanisms. Here, we adopt an experimental approach to explore the mechanism of the model polar cycloaddition of 2,3-dibromo-1,3-butadiene with propene ions by probing its conformational specificities in the entrance channel under single-collision conditions in the gas phase. Combining a conformationally controlled molecular beam with trapped ions, we find that both conformers of the diene, gauche and s-trans, are reactive with capture-limited reaction rates. Aided by quantum-chemical and quantum-capture calculations, this finding is rationalised by a simultaneous competition of concerted and stepwise reaction pathways, revealing an interesting mechanistic borderline case. Identifying a concerted or stepwise mechanism in Diels–Alder reactions is experimentally challenging. Here the authors demonstrate the coexistence of both mechanisms in the reaction of 2,3-dibromobuta-1,3-diene with propene ions, using a conformationally controlled molecular beam reacting with trapped ions and ab initio computations
Collapse
Affiliation(s)
- Ardita Kilaj
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Jia Wang
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany
| | - Patrik Straňák
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Max Schwilk
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.,Faculty of Physics, University of Vienna, 1090, Vienna, Austria
| | - Uxía Rivero
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - Lei Xu
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland
| | - O Anatole von Lilienfeld
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.,Faculty of Physics, University of Vienna, 1090, Vienna, Austria
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607, Hamburg, Germany. .,Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany. .,Department of Chemistry, Universität Hamburg, Martin-Luther-King-Platz 6, 20146, Hamburg, Germany. .,Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany.
| | - Stefan Willitsch
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056, Basel, Switzerland.
| |
Collapse
|