2
|
Voufack AB, Claiser N, Lecomte C, Pillet S, Pontillon Y, Gillon B, Yan Z, Gillet JM, Marazzi M, Genoni A, Souhassou M. When combined X-ray and polarized neutron diffraction data challenge high-level calculations: spin-resolved electron density of an organic radical. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS 2017; 73:544-549. [DOI: 10.1107/s2052520617008241] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 06/02/2017] [Indexed: 11/10/2022]
Abstract
Joint refinement of X-ray and polarized neutron diffraction data has been carried out in order to determine charge and spin density distributions simultaneously in the nitronyl nitroxide (NN) free radical Nit(SMe)Ph. For comparison purposes, density functional theory (DFT) and complete active-space self-consistent field (CASSCF) theoretical calculations were also performed. Experimentally derived charge and spin densities show significant differences between the two NO groups of the NN function that are not observed from DFT theoretical calculations. On the contrary, CASSCF calculations exhibit the same fine details as observed in spin-resolved joint refinement and a clear asymmetry between the two NO groups.
Collapse
|
3
|
Allão RA, Jordão AK, Resende JALC, Cunha AC, Ferreira VF, Novak MA, Sangregorio C, Sorace L, Vaz MGF. Determination of the relevant magnetic interactions in low-dimensional molecular materials: the fundamental role of single crystal high frequency EPR. Dalton Trans 2011; 40:10843-50. [PMID: 21860868 DOI: 10.1039/c1dt10780a] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new one-dimensional copper(II) complex with formula [Cu(hfac)(2)(N(3)TEMPO)](n) (hfac = hexafluoroacetylacetonate and N(3)TEMPO = 4-azido-2,2,6,6-tetramethylpiperidine-1-oxyl) has been synthesized and investigated by X-ray crystallography, magnetometry and multifrequency single crystal EPR. The system crystallizes in the P1 space group with two non equivalent copper(II) ions in the unit cell, the two nitroxide radicals being coordinated to Cu(1) in axial positions. The copper(II) ions are bridged by N(3)TEMPO radicals resulting in a zig-zag chain structure. The magnetic susceptibility data were at first satisfactorily modeled assuming an alternating spin chain along the monodimensional covalent skeleton, with a ferromagnetic interaction between Cu(1) and the nitroxide moieties and a weaker antiferromagnetic interaction between these and Cu(2) (J(1) = -13.8 cm(-1), J(2) = +2.4 cm(-1)). However, single crystal EPR studies performed at the X- and W-band clearly demonstrate that the observed magnetic monodimensional character of the complex is actually due to the intermolecular contacts involving N(3)TEMPO ligands. This prompted us to fit the magnetic data using a consistent model, pointing out the fundamental role of single crystal EPR data in defining a correct model to describe the magnetic properties of molecular low dimensional systems.
Collapse
Affiliation(s)
- R A Allão
- Instituto de Química, Universidade Federal Fluminense, 24020-141, Niterói, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Aronica C, Jeanneau E, El Moll H, Luneau D, Gillon B, Goujon A, Cousson A, Carvajal MA, Robert V. Ferromagnetic Interaction in an Asymmetric End-to-End Azido Double-Bridged Copper(II) Dinuclear Complex: A Combined Structure, Magnetic, Polarized Neutron Diffraction and Theoretical Study. Chemistry 2007; 13:3666-74. [PMID: 17285651 DOI: 10.1002/chem.200601253] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
A new end-to-end azido double-bridged copper(II) complex [Cu(2)L(2)(N(3))2] (1) was synthesized and characterized (L=1,1,1-trifluoro-7-(dimethylamino)-4-methyl-5-aza-3-hepten-2-onato). Despite the rather long Cu-Cu distance (5.105(1) A), the magnetic interaction is ferromagnetic with J= +16 cm(-1) (H=-JS(1)S(2)), a value that has been confirmed by DFT and high-level correlated ab initio calculations. The spin distribution was studied by using the results from polarized neutron diffraction. This is the first such study on an end-to-end system. The experimental spin density was found to be localized mainly on the copper(II) ions, with a small degree of delocalization on the ligand (L) and terminal azido nitrogens. There was zero delocalization on the central nitrogen, in agreement with DFT calculations. Such a picture corresponds to an important contribution of the d(x2-y2) orbital and a small population of the d(z2) orbital, in agreement with our calculations. Based on a correlated wavefunction analysis, the ferromagnetic behavior results from a dominant double spin polarization contribution and vanishingly small ionic forms.
Collapse
Affiliation(s)
- Christophe Aronica
- Université Claude Bernard Lyon-1, Laboratoire des Multimatériaux et Interfaces (UMR 5615), Campus de La Doua, 69622 Villeurbanne Cedex, France
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Baron V, Gillon B, Plantevin O, Cousson A, Mathonière C, Kahn O, Grand A, Öhrström L, Delley B. Spin-Density Maps for an Oxamido-Bridged Mn(II)Cu(II) Binuclear Compound. Polarized Neutron Diffraction and Theoretical Studies. J Am Chem Soc 1996. [DOI: 10.1021/ja961545p] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Valery Baron
- Contribution from the Laboratoire Léon Brillouin, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France, Laboratoire des Sciences Moléculaires, Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS No. 9048, 33608 Pessac, France, Laboratoire de Chimie de Coordination, URA CNRS No. 1195, Centre d'Etudes Nucléaires de Grenoble, 38054 Grenoble, France, and Paul Scherrer Institute Zürich, Badenerstrasse 569, 8048 Zürich, Switzerland
| | - Béatrice Gillon
- Contribution from the Laboratoire Léon Brillouin, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France, Laboratoire des Sciences Moléculaires, Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS No. 9048, 33608 Pessac, France, Laboratoire de Chimie de Coordination, URA CNRS No. 1195, Centre d'Etudes Nucléaires de Grenoble, 38054 Grenoble, France, and Paul Scherrer Institute Zürich, Badenerstrasse 569, 8048 Zürich, Switzerland
| | - Olivier Plantevin
- Contribution from the Laboratoire Léon Brillouin, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France, Laboratoire des Sciences Moléculaires, Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS No. 9048, 33608 Pessac, France, Laboratoire de Chimie de Coordination, URA CNRS No. 1195, Centre d'Etudes Nucléaires de Grenoble, 38054 Grenoble, France, and Paul Scherrer Institute Zürich, Badenerstrasse 569, 8048 Zürich, Switzerland
| | - Alain Cousson
- Contribution from the Laboratoire Léon Brillouin, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France, Laboratoire des Sciences Moléculaires, Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS No. 9048, 33608 Pessac, France, Laboratoire de Chimie de Coordination, URA CNRS No. 1195, Centre d'Etudes Nucléaires de Grenoble, 38054 Grenoble, France, and Paul Scherrer Institute Zürich, Badenerstrasse 569, 8048 Zürich, Switzerland
| | - Corine Mathonière
- Contribution from the Laboratoire Léon Brillouin, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France, Laboratoire des Sciences Moléculaires, Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS No. 9048, 33608 Pessac, France, Laboratoire de Chimie de Coordination, URA CNRS No. 1195, Centre d'Etudes Nucléaires de Grenoble, 38054 Grenoble, France, and Paul Scherrer Institute Zürich, Badenerstrasse 569, 8048 Zürich, Switzerland
| | - Olivier Kahn
- Contribution from the Laboratoire Léon Brillouin, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France, Laboratoire des Sciences Moléculaires, Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS No. 9048, 33608 Pessac, France, Laboratoire de Chimie de Coordination, URA CNRS No. 1195, Centre d'Etudes Nucléaires de Grenoble, 38054 Grenoble, France, and Paul Scherrer Institute Zürich, Badenerstrasse 569, 8048 Zürich, Switzerland
| | - André Grand
- Contribution from the Laboratoire Léon Brillouin, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France, Laboratoire des Sciences Moléculaires, Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS No. 9048, 33608 Pessac, France, Laboratoire de Chimie de Coordination, URA CNRS No. 1195, Centre d'Etudes Nucléaires de Grenoble, 38054 Grenoble, France, and Paul Scherrer Institute Zürich, Badenerstrasse 569, 8048 Zürich, Switzerland
| | - Lars Öhrström
- Contribution from the Laboratoire Léon Brillouin, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France, Laboratoire des Sciences Moléculaires, Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS No. 9048, 33608 Pessac, France, Laboratoire de Chimie de Coordination, URA CNRS No. 1195, Centre d'Etudes Nucléaires de Grenoble, 38054 Grenoble, France, and Paul Scherrer Institute Zürich, Badenerstrasse 569, 8048 Zürich, Switzerland
| | - Bernard Delley
- Contribution from the Laboratoire Léon Brillouin, Centre d'Etudes Nucléaires de Saclay, 91191 Gif sur Yvette, France, Laboratoire des Sciences Moléculaires, Institut de Chimie de la Matière Condensée de Bordeaux, UPR CNRS No. 9048, 33608 Pessac, France, Laboratoire de Chimie de Coordination, URA CNRS No. 1195, Centre d'Etudes Nucléaires de Grenoble, 38054 Grenoble, France, and Paul Scherrer Institute Zürich, Badenerstrasse 569, 8048 Zürich, Switzerland
| |
Collapse
|