1
|
Chang H, Li W, Sun Z. New Diabatic Potential Energy Surfaces for the Li + H 2 Reaction and Time-Dependent Quantum Wave Packet Studies. J Phys Chem A 2024; 128:4412-4424. [PMID: 38787593 DOI: 10.1021/acs.jpca.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
New global diabatic potential energy surfaces (DPESs) for the ground (12A') and first excited (22A') states for the Li + H2 system were developed, with more than 30,000 energy points at the IC-MRCI+Q level of theory, utilizing the aug-cc-pV5Z basis set for the H atoms and the cc-pCV5Z basis set for the Li atom, fitted by a single neural network (NN) with symmetry. Product state-resolved quantum dynamics calculations of the nonadiabatic reaction Li (2P) + H2 (X 1 ∑g+, v0 = 0, j0 = 0) → LiH (X 1∑+) + H(2S) were carried out using these new DPESs and also the previous HYLC-DPESs. The numerical results suggested that our newly constructed DPESs provided an accurate description of the LiH2 system.
Collapse
Affiliation(s)
- Hanwen Chang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wentao Li
- Weifang University of Science and Technology, Shouguang 262700, China
| | - Zhigang Sun
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Weike N, Fritsch F, Eisfeld W. Compensation States Approach in the Hybrid Diabatization Scheme: Extension to Multidimensional Data and Properties. J Phys Chem A 2024; 128:4353-4368. [PMID: 38748493 DOI: 10.1021/acs.jpca.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The diabatization of reactive systems for more than just a couple of states is a very demanding problem and generally requires advanced diabatization techniques. Especially for dissociative processes, the drastic changes in the adiabatic wave functions often would require large diabatic state bases, which quickly become impractical. Recently, we addressed this problem by the compensation states approach developed in the context of our hybrid diabatization scheme. This scheme utilizes wave function as well as energy data in combination with a diabatic potential model. In regions where the initial diabatic state basis becomes insufficient for an appropriate representation of the adiabatic states, new model states are generated. The new model states compensate for the state space not spanned by the initial diabatic basis. Such a compensation state is obtained by projecting the initial diabatic state space out of the adiabatic wave function. This yields a very efficient basis representation of the electronic Hamiltonian. The present work presents two new aspects. First, it is shown how other operators like the spin-orbit operator in the framework of the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) can be evaluated in this compact model state space without losing the correct wave function information and accuracy. Second, the extension of the approach to multidimensional potential energy surface models is presented for methyl iodide including the C-I dissociation coordinate and the angular H3C-I bending coordinates.
Collapse
Affiliation(s)
- Nicole Weike
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Fabian Fritsch
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
3
|
Huang X, Cheng XL. The role of the sextet potential energy surface in O 2 + N inelastic collision processes. Phys Chem Chem Phys 2023; 25:4929-4938. [PMID: 36722789 DOI: 10.1039/d2cp05329b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We have performed molecular dynamics simulations of inelastic collisions between molecular oxygen and atomic nitrogen, employing the quasi-classical trajectory method on the new doublet, quartet, and sextet analytical potential energy surfaces of NO2. A complete database of vibrationally detailed rate coefficients is constructed in a wide temperature range for high vibrational states up to ν = 25. In particular, the present work shows that the sextet potential energy surface plays a crucial role in the rovibrational relaxation process of O2 + N collisions. The state-to-state rate coefficients increase by a factor of 2 to 6 when we consider the contribution of this sextet potential energy surface according to the corresponding weight factor, especially for vibrational energy transfer processes in single quantum jumps and/or high-temperature regimes. Furthermore, we also provide Arrhenius-type accurate fits for the vibrational state-specific rate coefficients of this collision system to achieve the flexible application of rate coefficients in numerical codes concerning air kinetics. Our results have implications for understanding the relaxation mechanism of the collision system with degenerate electronic states.
Collapse
Affiliation(s)
- Xia Huang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China.
| | - Xin-Lu Cheng
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu, 610065, China. .,Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
4
|
Accurate Adiabatic and Diabatic Potential Energy Surfaces for the Reaction of He + H 2. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7552881. [PMID: 35757471 PMCID: PMC9225863 DOI: 10.1155/2022/7552881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
The accurate adiabatic and diabatic potential energy surfaces, which are for the two lowest states of He + H2, are presented in this study. The Molpro 2012 software package is used, and the large basis sets (aug-cc-pV5Z) are selected. The high-level MCSCF/MRCI method is employed to calculate the adiabatic potential energy points of the title reaction system. The triatomic reaction system is described by Jacobi coordinates, and the adiabatic potential energy surfaces are fitted accurately using the B-spline method. The equilibrium structures and electronic energies for the H2 are provided, and the corresponding different levels of vibrational energies of the ground state are deduced. To better express the diabatic process of the whole reaction, avoid crossing points being calculated and conical intersection also being optimized. Meanwhile, the diabatic potential energy surfaces of the reaction process are constructed. This study will be helpful for the analysis of histopathology and for the study in biological and medical mechanisms.
Collapse
|
5
|
Wang Y, Cheng X. State-to-State Transition Study of the Exchange Reaction for N( 4S) and O 2(X 3Σ g-) Collision by Quasi-Classical Trajectory. J Phys Chem A 2021; 125:9318-9326. [PMID: 34652155 DOI: 10.1021/acs.jpca.1c06386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Based on the new 2A' and 4A' potential energy surfaces of NO2 fitted by Varga et al., we conducted a quasi-classical trajectory study on the N(4S) +O2(X3Σg- ) → NO(2Π) + O(3P) reaction, focusing on the high vibrational state up to ν = 25. For different rovibrational states of O2, within the relative translational energy (Ec) range of 0.1-30 eV, the total exchange cross section (ECS) is calculated, and it is found that the initial relative translational energy and vibration excitation have a significant effect on ECSs, while rotational excitation has little influence; the rate coefficient of the high rovibrational state of O2 molecules at high temperatures is studied, and it is found that when the vibrational level ν of O2 is in the range of 0-15, the value of log10 k(T, ν, j) with the vibrational level ν is almost linear, while when ν is greater than 15, it becomes gentle with the increase in ν. Finally, the state-to-state rate coefficients are calculated; our results supply the advantageous state-to-state process data in the NO2 system, and they are useful for further studying the related hypersonic gas flow at very high temperature.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xinlu Cheng
- Institute of Atomic and Molecular Physics and Key Laboratory of High Energy Density Physics and Technology of Ministry of Education, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Choi S, Vaníček J. How important are the residual nonadiabatic couplings for an accurate simulation of nonadiabatic quantum dynamics in a quasidiabatic representation? J Chem Phys 2021; 154:124119. [PMID: 33810696 DOI: 10.1063/5.0046067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Diabatization of the molecular Hamiltonian is a standard approach to remove the singularities of nonadiabatic couplings at conical intersections of adiabatic potential energy surfaces. In general, it is impossible to eliminate the nonadiabatic couplings entirely-the resulting "quasidiabatic" states are still coupled by smaller but nonvanishing residual nonadiabatic couplings, which are typically neglected. Here, we propose a general method for assessing the validity of this potentially drastic approximation by comparing quantum dynamics simulated either with or without the residual couplings. To make the numerical errors negligible to the errors due to neglecting the residual couplings, we use the highly accurate and general eighth-order composition of the implicit midpoint method. The usefulness of the proposed method is demonstrated on nonadiabatic simulations in the cubic Jahn-Teller model of nitrogen trioxide and in the induced Renner-Teller model of hydrogen cyanide. We find that, depending on the system, initial state, and employed quasidiabatization scheme, neglecting the residual couplings can result in wrong dynamics. In contrast, simulations with the exact quasidiabatic Hamiltonian, which contains the residual couplings, always yield accurate results.
Collapse
Affiliation(s)
- Seonghoon Choi
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Choi S, Vaníček J. Which form of the molecular Hamiltonian is the most suitable for simulating the nonadiabatic quantum dynamics at a conical intersection? J Chem Phys 2020; 153:211101. [DOI: 10.1063/5.0033410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Seonghoon Choi
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jiří Vaníček
- Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Ravi S, Mukherjee S, Mukherjee B, Adhikari S, Sathyamurthy N, Baer M. Non-adiabatic coupling as a frictional force in (He, H, H)+ dynamics and the formation of HeH2+. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1811907] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Satyam Ravi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Bijit Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, India
| | | | - Michael Baer
- The Fritz Haber Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Mukherjee B, Naskar K, Mukherjee S, Ghosh S, Sahoo T, Adhikari S. Beyond Born–Oppenheimer theory for spectroscopic and scattering processes. INT REV PHYS CHEM 2019. [DOI: 10.1080/0144235x.2019.1672987] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Bijit Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Koushik Naskar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Soumya Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Sandip Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| | - Tapas Sahoo
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, Canada
| | - Satrajit Adhikari
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata, India
| |
Collapse
|
10
|
Richter M, González-Vázquez J, Mašín Z, Brambila DS, Harvey AG, Morales F, Martín F. Ultrafast imaging of laser-controlled non-adiabatic dynamics in NO2 from time-resolved photoelectron emission. Phys Chem Chem Phys 2019; 21:10038-10051. [PMID: 31046039 DOI: 10.1039/c9cp00649d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imaging and controlling the ultrafast conical intersection dynamics in NO2 using the latest advances in attosecond and light-synthesizer technology.
Collapse
Affiliation(s)
- Maria Richter
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| | | | - Zdeněk Mašín
- Max-Born-Institute
- Max-Born-Straße 2A
- 12489 Berlin
- Germany
| | | | | | | | - Fernando Martín
- Departamento de Química
- Módulo 13
- Universidad Autónoma de Madrid
- 28049 Madrid
- Spain
| |
Collapse
|
11
|
Robertson C, González-Vázquez J, Corral I, Díaz-Tendero S, Díaz C. Nonadiabatic scattering of NO off Au3
clusters: A simple and robust diabatic state manifold generation method for multiconfigurational wavefunctions. J Comput Chem 2018; 40:794-810. [DOI: 10.1002/jcc.25764] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/28/2018] [Accepted: 11/01/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Christopher Robertson
- Department of Chemistry and Centre for Scientific Computing; University Of Warwick, CV4 7AL; Coventry United Kingdom
| | - Jesús González-Vázquez
- Departamento de Química Módulo 13; Universidad Autónoma de Madrid, 28049; Madrid Spain
- Institute for Advanced Research in Chemistry (IAdChem); Universidad Autónoma de Madrid, 28049; Madrid Spain
| | - Ines Corral
- Institute for Advanced Research in Chemistry (IAdChem); Universidad Autónoma de Madrid, 28049; Madrid Spain
- Departamento de Química Módulo 13; Universidad Autónoma de Madrid, 28049; Madrid Spain
| | - Sergio Díaz-Tendero
- Condensed Matter Physics Center (IFIMAC); Universidad Autónoma de Madrid, 28049; Madrid Spain
- Departamento de Química Módulo 13; Universidad Autónoma de Madrid, 28049; Madrid Spain
- Institute for Advanced Research in Chemistry (IAdChem); Universidad Autónoma de Madrid, 28049; Madrid Spain
| | - Cristina Díaz
- Departamento de Química Módulo 13; Universidad Autónoma de Madrid, 28049; Madrid Spain
- Institute for Advanced Research in Chemistry (IAdChem); Universidad Autónoma de Madrid, 28049; Madrid Spain
- Condensed Matter Physics Center (IFIMAC); Universidad Autónoma de Madrid, 28049; Madrid Spain
| |
Collapse
|
12
|
Wang S, Yang Z, Yuan J, Chen M. New diabatic potential energy surfaces of the NaH 2 system and dynamics studies for the Na(3p) + H 2 → NaH + H reaction. Sci Rep 2018; 8:17960. [PMID: 30568250 PMCID: PMC6299287 DOI: 10.1038/s41598-018-35987-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/14/2018] [Indexed: 12/04/2022] Open
Abstract
The Na(3p) + H2(X1Σg+) → NaH(X1Σ+) + H(2S) reaction plays an important role in the field of diabatic reaction dynamics. A set of new diabatic potential energy surfaces (PESs) of the NaH2 system are structured, which include the diabatic coupling between the lowest two adiabatic states. The electronic structure calculations are performed on the multi-reference configuration interaction level with the cc-pwCVQZ and aug-cc-PVQZ basis sets for Na and H atoms. 32402 geometries are chosen to construct the diabatic data by a unitary transformation based on the molecular property method. The diabatic matrix elements of [Formula: see text], [Formula: see text] and [Formula: see text] ([Formula: see text]) are fitted by the artificial neural network model. The spectroscopic constants of diatoms obtained from the present PESs are consistent with the experimental data. The topographical and intersection characteristics of the [Formula: see text] and [Formula: see text] surfaces are discussed. Based on the new PESs, the time-dependent quantum wave packet calculations are carried out to study the reaction mechanism of the title reaction in detail.
Collapse
Affiliation(s)
- Shufen Wang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, P.R. China
| | - Jiuchuang Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, 116023, P.R. China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology, Dalian, 116024, P.R. China.
| |
Collapse
|
13
|
von Conta A, Tehlar A, Schletter A, Arasaki Y, Takatsuka K, Wörner HJ. Conical-intersection dynamics and ground-state chemistry probed by extreme-ultraviolet time-resolved photoelectron spectroscopy. Nat Commun 2018; 9:3162. [PMID: 30089780 PMCID: PMC6082858 DOI: 10.1038/s41467-018-05292-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/15/2018] [Indexed: 11/09/2022] Open
Abstract
Time-resolved photoelectron spectroscopy (TRPES) is a useful approach to elucidate the coupled electronic-nuclear quantum dynamics underlying chemical processes, but has remained limited by the use of low photon energies. Here, we demonstrate the general advantages of XUV-TRPES through an application to NO2, one of the simplest species displaying the complexity of a non-adiabatic photochemical process. The high photon energy enables ionization from the entire geometrical configuration space, giving access to the true dynamics of the system. Specifically, the technique reveals dynamics through a conical intersection, large-amplitude motion and photodissociation in the electronic ground state. XUV-TRPES simultaneously projects the excited-state wave packet onto many final states, offering a multi-dimensional view of the coupled electronic and nuclear dynamics. Our interpretations are supported by ab initio wavepacket calculations on new global potential-energy surfaces. The presented results contribute to establish XUV-TRPES as a powerful technique providing a complete picture of ultrafast chemical dynamics from photoexcitation to the final products.
Collapse
Affiliation(s)
- A von Conta
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland
| | - A Tehlar
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland
| | - A Schletter
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland
| | - Y Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
| | - K Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto, 606-8103, Japan
| | - H J Wörner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, CH-8093, Zurich, Switzerland.
| |
Collapse
|
14
|
Tehlar A, von Conta A, Arasaki Y, Takatsuka K, Wörner HJ. Ab initio calculation of femtosecond-time-resolved photoelectron spectra of NO 2 after excitation to the A-band. J Chem Phys 2018; 149:034307. [PMID: 30037246 DOI: 10.1063/1.5029365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present calculations of time-dependent photoelectron spectra of NO2 after excitation to the A-band for comparison with extreme-ultraviolet (XUV) time-resolved photoelectron spectroscopy. We employ newly calculated potential energy surfaces of the two lowest-lying coupled 2A' states obtained from multi-reference configuration-interaction calculations to propagate the photo-excited wave packet using a split-step-operator method. The propagation includes the nonadiabatic coupling of the potential surfaces as well as the explicit interaction with the pump pulse centered at 3.1 eV (400 nm). A semiclassical approach to calculate the time-dependent photoelectron spectrum arising from the ionization to the eight energetically lowest-lying states of the cation allows us to reproduce the static experimental spectrum up to a binding energy of 16 eV and enables direct comparisons with XUV time-resolved photoelectron spectroscopy.
Collapse
Affiliation(s)
- Andres Tehlar
- Laboratory for Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Aaron von Conta
- Laboratory for Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| | - Yasuki Arasaki
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Kazuo Takatsuka
- Fukui Institute for Fundamental Chemistry, Kyoto University, Sakyo-ku, Kyoto 606-8103, Japan
| | - Hans Jakob Wörner
- Laboratory for Physical Chemistry, ETH Zürich, Wolfgang-Pauli-Strasse 10, CH-8093 Zürich, Switzerland
| |
Collapse
|
15
|
|
16
|
Yang Z, Yuan J, Wang S, Chen M. Global diabatic potential energy surfaces for the BeH 2 + system and dynamics studies on the Be +( 2P) + H 2(X 1Σ g +) → BeH +(X 1Σ +) + H( 2S) reaction. RSC Adv 2018; 8:22823-22834. [PMID: 35539737 PMCID: PMC9081383 DOI: 10.1039/c8ra04305a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/13/2018] [Accepted: 06/14/2018] [Indexed: 11/21/2022] Open
Abstract
The Be+(2P) + H2(X1Σg +) → BeH+(X1Σ+) + H(2S) reaction has great significance for studying diabatic processes and ultracold chemistry. The first global diabatic potential energy surfaces (PESs) which are correlated with the lowest two adiabatic states 12A' and 22A' of the BeH2 + system are constructed by using the neural network method. Ab initio energy points are calculated using the multi-reference configuration interaction method with the Davidson correction and AVQZ basis set. The diabatic energies are obtained from the transformation of ab initio data based on the dipole moment operators. The topographical characteristics of the diabatic PESs are described in detail, and the positions of crossing between the V d 11 and V d 22 are pinpointed. On new diabatic PESs, the time-dependent quantum wave packet method is carried out to study the mechanism of the title reaction. The results of dynamics calculations indicate the reaction has no threshold and the product BeH+ is excited to high vibrational states easily. In addition, the product BeH+ tends to backward scattering at most collision energies.
Collapse
Affiliation(s)
- Zijiang Yang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology Dalian 116024 P. R. China
| | - Jiuchuang Yuan
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology Dalian 116024 P. R. China
| | - Shufen Wang
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology Dalian 116024 P. R. China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
17
|
|
18
|
Fu L, Wang D, Huang X. Accurate potential energy surfaces for the first two lowest electronic states of the Li (2p) + H2 reaction. RSC Adv 2018; 8:15595-15602. [PMID: 35539505 PMCID: PMC9080088 DOI: 10.1039/c8ra02504e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 04/15/2018] [Indexed: 01/17/2023] Open
Abstract
The accuracy of three-dimensional adiabatic and diabatic potential energy surfaces is calculated using ab initio methods and is numerically fitted for the two lowest electronic states 1 and 22A′ of the LiH2 system, which are very important for the Li (2p) + H2 reaction. The finite difference method is performed to generate the mixing angles, which are used to educe the diabatic potential from the adiabatic potential. The accurate conical intersection (CI) is studied in this work with three different basis sets. The energy of the conical intersection is slightly lower (nearly 0.12 eV) than that of the perpendicular intermediate on the first excited state. By analyzing the potential energy surfaces in this work we can suggest that the most possible reaction pathway for the title reaction is Li (2p) + H2 → LiH2 (22A′) (C2v) → CI → LiH2 (12A′) (C2v) → LiH⋯H → LiH (X1∑g+) + H. The conical intersection and (22A′) intermediate may play a vital role in the title reaction. Accurate diabatic potential energy surfaces for the Li (2p) + H2 → LiH (X) + H reaction are produced.![]()
Collapse
Affiliation(s)
- Liwei Fu
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People’s Republic of China
| | - Dequan Wang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People’s Republic of China
| | - Xuri Huang
- Laboratory of Theoretical and Computational Chemistry
- Institute of Theoretical Chemistry
- Jilin University
- Changchun
- People’s Republic of China
| |
Collapse
|
19
|
Yuan J, He D, Wang S, Chen M, Han K. Diabatic potential energy surfaces of MgH2+ and dynamic studies for the Mg+(3p) + H2 → MgH+ + H reaction. Phys Chem Chem Phys 2018; 20:6638-6647. [DOI: 10.1039/c7cp08679b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The global diabatic potential energy surfaces for the Mg+(3p) + H2 → MgH+ + H reaction are structured for the first time.
Collapse
Affiliation(s)
- Jiuchuang Yuan
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian 116023
- P. R. China
| | - Di He
- School of Physics and Optoelectronic Engineering
- Ludong University
- Yantai 264025
- P. R. China
| | - Shufen Wang
- Key Laboratory of Materials Modification by Laser
- Electron, and Ion Beams (Ministry of Education)
- School of Physics
- Dalian University of Technology
- Dalian 116024
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser
- Electron, and Ion Beams (Ministry of Education)
- School of Physics
- Dalian University of Technology
- Dalian 116024
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian 116023
- P. R. China
| |
Collapse
|
20
|
Eisfeld W, Viel A. Vibronic eigenstates and the geometric phase effect in the2E″ state of NO3. J Chem Phys 2017; 146:034303. [DOI: 10.1063/1.4973983] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
21
|
Wittenbrink N, Venghaus F, Williams D, Eisfeld W. A new approach for the development of diabatic potential energy surfaces: Hybrid block-diagonalization and diabatization by ansatz. J Chem Phys 2016; 145:184108. [DOI: 10.1063/1.4967258] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Nils Wittenbrink
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Florian Venghaus
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - David Williams
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| | - Wolfgang Eisfeld
- Theoretische Chemie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany
| |
Collapse
|
22
|
He D, Yuan J, Li H, Chen M. Global diabatic potential energy surfaces and quantum dynamical studies for the Li(2p) + H2(X(1)Σ(+)g) → LiH(X(1)Σ(+)) + H reaction. Sci Rep 2016; 6:25083. [PMID: 27125781 PMCID: PMC4850413 DOI: 10.1038/srep25083] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 04/11/2016] [Indexed: 11/09/2022] Open
Abstract
The global diabatic potential energy surfaces which are correlated with the ground state 1A' and the excited state 2A' of the Li(2p) + H2 reaction are presented in this study. The multi-reference configuration interaction method and large basis sets (aug-cc-pVQZ for H atom and cc-pwCVQZ for Li atom) were employed in the ab initio single-point energy calculations. The diabatic potential energies were generated by the diabatization scheme based on transition dipole moment operators. The neural network method was utilized to fit the matrix elements of the diabatic energy surfaces, and the root mean square errors were extremely small (3.69 meV for , 5.34 meV for and 5.06 meV for ). The topographical features of the diabatic potential energy surfaces were characterized and the surfaces were found to be sufficiently smooth for the dynamical calculation. The crossing seam of the conical intersections between the and surfaces were pinpointed. Based on this new analytical diabatic potential energy surfaces, time-dependent wave packet calculation were conducted to investigate the mechanism of the title reaction. At low collision energies, the product LiH molecule tends to forward scattering, while at high collision energies, the forward and backward scatterings exist simultaneously.
Collapse
Affiliation(s)
- Di He
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Jiuchuang Yuan
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Huixing Li
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Maodu Chen
- Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams (Ministry of Education), School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
23
|
Venghaus F, Eisfeld W. Block-diagonalization as a tool for the robust diabatization of high-dimensional potential energy surfaces. J Chem Phys 2016; 144:114110. [DOI: 10.1063/1.4943869] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
24
|
Mukherjee S, Mukherjee B, Sardar S, Adhikari S. Ab initio constructed diabatic surfaces of NO2 and the photodetachment spectra of its anion. J Chem Phys 2015; 143:244307. [PMID: 26723671 DOI: 10.1063/1.4938526] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A thorough investigation has been performed for electronic structure, topological effect, and nuclear dynamics of NO2 molecule, where the adiabatic potential energy surfaces (PESs), conical intersections between the ground (X(2)A1) and the first excited state (A(2)B2), and the corresponding non-adiabatic coupling terms between those states are recalculated [Chem. Phys. 416, 11 (2013)] to achieve enough accuracy in dynamics. We employ beyond Born-Oppenheimer theory for these two state sub-Hilbert space to carry out adiabatic to diabatic transformation (ADT) to obtain the ADT angles and thereby, to construct single-valued, smooth, and continuous diabatic PESs. The analytic expressions for the adiabatic PESs and ADT angles are provided to represent a two-state three-mode diabatic Hamiltonian of NO2 for performing nuclear dynamics to calculate the photo-electron spectra of its anion. It appears that not only Jahn-Teller type coupling but also Renner-Teller interaction contributes significantly on the overall spectrum. The coupling between the electronic states (X(2)A1 and A(2)B2) of NO2 is essentially through the asymmetric stretching mode, where the functional form of such interaction is distinctly symmetric and non-linear.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Bijit Mukherjee
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Subhankar Sardar
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Satrajit Adhikari
- Department of Physical Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
25
|
Eisfeld W, Vieuxmaire O, Viel A. Full-dimensional diabatic potential energy surfaces including dissociation: The 2E″ state of NO3. J Chem Phys 2014; 140:224109. [DOI: 10.1063/1.4879655] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Lévêque C, Komainda A, Taïeb R, Köppel H. Ab initio quantum study of the photodynamics and absorption spectrum for the coupled 11A2 and 11B1 states of SO2. J Chem Phys 2013; 138:044320. [DOI: 10.1063/1.4776758] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
27
|
Sardar S, Paul AK, Adhikari S. A quantum-classical simulation of the nuclear dynamics in NO 2 − and C6H 6 + with realistic model Hamiltonian. J CHEM SCI 2011. [DOI: 10.1007/s12039-010-0084-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Arasaki Y, Wang K, McKoy V, Takatsuka K. Monitoring the effect of a control pulse on a conical intersection by time-resolved photoelectron spectroscopy. Phys Chem Chem Phys 2011; 13:8681-9. [DOI: 10.1039/c0cp02302g] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Epifanovsky E, Krylov AI. Direct location of the minimum point on intersection seams of potential energy surfaces with equation-of-motion coupled-cluster methods. Mol Phys 2010. [DOI: 10.1080/00268970701549397] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Quantum calculations of nonadiabatic 2A1–2B2 conical-intersection effects in the reactions and N(4S)+O2(A3Δu). Chem Phys 2010. [DOI: 10.1016/j.chemphys.2010.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
31
|
Arasaki Y, Takatsuka K, Wang K, McKoy V. Time-resolved photoelectron spectroscopy of wavepackets through a conical intersection in NO2. J Chem Phys 2010; 132:124307. [DOI: 10.1063/1.3369647] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Arasaki Y, Takatsuka K. Optical conversion of conical intersection to avoided crossing. Phys Chem Chem Phys 2010; 12:1239-42. [DOI: 10.1039/b919504a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
XIE DAIQIAN, YAN GUOSEN. A refined potential energy function for the electronic ground state of NO2. Mol Phys 2009. [DOI: 10.1080/00268979609484515] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- DAIQIAN XIE
- a Department of Chemistry , Sichuan University , Chengdu , 610064 , People's Republic of China
| | - GUOSEN YAN
- a Department of Chemistry , Sichuan University , Chengdu , 610064 , People's Republic of China
| |
Collapse
|
34
|
BOGGIO-PASQUA M, VORONIN AI, HALVICK PH, RAYEZ JC, VARANDAS AJC. Coupled ab initio potential energy surfaces for the two lowest 2A′ electronic states of the C2H molecule. Mol Phys 2009. [DOI: 10.1080/00268970009483396] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- M. BOGGIO-PASQUA
- a Laboratoire de Physico-Chimie Moléculaire—UMR 5803/CNRS , Université Bordeaux 1 , 33405 , Talence Cedex, France
| | - A. I. VORONIN
- a Laboratoire de Physico-Chimie Moléculaire—UMR 5803/CNRS , Université Bordeaux 1 , 33405 , Talence Cedex, France
| | - PH. HALVICK
- a Laboratoire de Physico-Chimie Moléculaire—UMR 5803/CNRS , Université Bordeaux 1 , 33405 , Talence Cedex, France
| | - J.-C. RAYEZ
- a Laboratoire de Physico-Chimie Moléculaire—UMR 5803/CNRS , Université Bordeaux 1 , 33405 , Talence Cedex, France
| | - A. J. C. VARANDAS
- b Departamento de Química , Universidade de Coimbra , 3049 , Coimbra Codex , Portugal
| |
Collapse
|
35
|
Honigmann M, Buenker RJ, Liebermann HP. Complex multireference configuration interaction calculations employing a coupled diabatic representation for the Πg2 resonance states of N2−. J Chem Phys 2009; 131:034303. [DOI: 10.1063/1.3173277] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
36
|
The photodissociation of NO2 in the second absorption band: Ab initio and quantum dynamics calculations. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.01.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Arasaki Y, Takatsuka K. Quantum wavepacket dynamics for time-resolved photoelectron spectroscopy of the NO2 conical intersection. Chem Phys 2007. [DOI: 10.1016/j.chemphys.2007.04.025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Sarkar B, Adhikari S, Baer M. Space-time contours to treat intense field-dressed molecular states. I. Theory. J Chem Phys 2007; 127:014301. [PMID: 17627340 DOI: 10.1063/1.2743437] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A molecular system exposed to an intense external field is considered. The strength of the field is measured by the number L of electronic states that become populated during this process. In the present article the authors discuss a rigorous way, based on the recently introduced space-time contours [R. Baer, et al., J. Chem. Phys. 119, 6998 (2003)], to form N coupled Schrodinger equations where N<L, which maintains the effects due to the remaining (L-N) populated states. It is shown that whereas the size of L is unlimited, the main requirement concerning N is that the original group of N field-free states forms a Hilbert subspace in the spatial region of interest. From previous studies it is known that a group of states forms a Hilbert subspace if and only if the corresponding topological D matrix is diagonal [M. Baer, et al., Farad, Discuss 127, 337 (2004)].
Collapse
Affiliation(s)
- Biplab Sarkar
- Department of Chemistry, Indian Institute of Technology, Guwahati, North Guwahati, Guwahati 781039, India
| | | | | |
Collapse
|
39
|
Pacher T, Cederbaum LS, Köppel H. Adiabatic and Quasidiabatic States in a Gauge Theoretical Framework. ADVANCES IN CHEMICAL PHYSICS 2007. [DOI: 10.1002/9780470141427.ch4] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
40
|
Köppel H, Schubert B. The concept of regularized diabatic states for a general conical intersection. Mol Phys 2007. [DOI: 10.1080/00268970500417937] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- H. Köppel
- a Theoretische Chemie, Physikalisch-Chemisches Institut , Universität Heidelberg , Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| | - B. Schubert
- a Theoretische Chemie, Physikalisch-Chemisches Institut , Universität Heidelberg , Im Neuenheimer Feld 229, D-69120 Heidelberg, Germany
| |
Collapse
|
41
|
Dhilip Kumar TJ, Saieswari A, Kumar S. Elastic and charge transfer processes in H+ + CO collisions. J Chem Phys 2006; 124:034314. [PMID: 16438590 DOI: 10.1063/1.2158998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Proton and hydrogen atom time-of-flight spectra in collision energy range of E(trans) = 9.5-30 eV show that the endoergic charge transfer process in the H+ + CO system is almost an order of magnitude less probable than the elastic scattering [G. Niedner-Schatteburg and J. P. Toennies, Adv. Chem. Phys. LXXXII, 553 (1992)]. Ab initio computations at the multireference configuration interaction level have been performed to obtain the ground- and several low-lying excited electronic state potential energy curves in three different molecular orientations namely, H+ approaching the O-end and the C-end (collinear), and H+ approaching the CO molecule in perpendicular configuration with fixed CO internuclear distance. Nonadiabatic coupling terms between the ground electronic state (H+ + CO) and the three low-lying excited electronic states (H + CO+) have been computed and the corresponding diabatic potentials have been obtained. A time-dependent wavepacket dynamics study is modeled first involving only the ground and the first excited states and then involving the ground and the three lowest excited states at the collision energy of 9.5 eV. The overall charge transfer probability have been found to be approximately 20%-30% which is in qualitative agreement with the experimental findings.
Collapse
Affiliation(s)
- T J Dhilip Kumar
- Department of Chemistry, Indian Institute of Technology, Madras, Chennai 600 036, India
| | | | | |
Collapse
|
42
|
Abstract
The pseudo-Jahn-Teller (PJT) coupling of a nondegenerate state A with a twofold degenerate state E by a degenerate vibrational mode e is studied for a general system with a C(3) main rotational axis. The PJT coupling terms up to sixth order are derived by symmetry considerations for this general (A+E) multiply sign in circle e case. The obtained expression for the 3 x 3 diabatic potential energy matrix is found to be closely related to the expression recently developed for the higher order Jahn-Teller case [A. Viel and W. Eisfeld, J. Chem. Phys. 120, 4603 (2004)]. The dynamical PJT coupling, which can arise for states of appropriate symmetry if one of the vibrational modes induces a change of the nuclear point group between D(3h), C(3v), C(3h), and C(3), is discussed. The effect of the higher order PJT coupling is tested by a two-dimensional model study based on the e bending mode of NH(3)(+). The models are analyzed by fitting the two-dimensional potential energy surfaces. The significance of the higher order terms on the nonadiabatic dynamics is demonstrated by quantum wave packet propagations.
Collapse
Affiliation(s)
- Wolfgang Eisfeld
- Lehrstuhl für Theoretische Chemie, Department Chemie, Technische Universität München, D-85747 Garching, Germany.
| | | |
Collapse
|
43
|
Billeter SR, Curioni A. Calculation of nonadiabatic couplings in density-functional theory. J Chem Phys 2005; 122:34105. [PMID: 15740190 DOI: 10.1063/1.1834562] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This paper proposes methods for calculating the derivative couplings between adiabatic states in density-functional theory (DFT) and compares them with each other and with multiconfigurational self-consistent field calculations. They are shown to be accurate and, as expected, the costs of their calculation scale more favorably with system size than post-Hartree-Fock calculations. The proposed methods are based on single-particle excitations and the associated Slater transition-state densities to overcome the problem of the unavailability of multielectron states in DFT which precludes a straightforward calculation of the matrix elements of the nuclear gradient operator. An iterative scheme employing linear-response theory was found to offer the best trade-off between accuracy and efficiency. The algorithms presented here have been implemented for doublet-doublet excitations within a plane-wave-basis and pseudopotential framework but are easily generalizable to other excitations and basis sets. Owing to their fundamental importance in cases where the Born-Oppenheimer separation of motions is not valid, these derivative couplings can facilitate, for example, the treatment of nonadiabatic charge transfers, of electron-phonon couplings, and of radiationless electronic transitions in DFT.
Collapse
|
44
|
Ab initio nonadiabatic coupling elements: the conical intersection between the three lower states of the {H2O} system. Chem Phys Lett 2004. [DOI: 10.1016/j.cplett.2004.09.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
Abstract
To predict the branching between energetically allowed product channels, chemists often rely on statistical transition state theories or exact quantum scattering calculations on a single adiabatic potential energy surface. The potential energy surface gives the energetic barriers to each chemical reaction and allows prediction of the reaction rates. Yet, chemical reactions evolve on a single potential energy surface only if, in simple terms, the electronic wavefunction can evolve from the reactant electronic configuration to the product electronic configuration on a time scale that is fast compared to the nuclear dynamics through the transition state. The experiments reviewed here investigate how the breakdown of the Born-Oppenheimer approximation at a barrier along an adiabatic reaction coordinate can alter the dynamics of and the expected branching between molecular dissociation pathways. The work reviewed focuses on three questions that have come to the forefront with recent theory and experiments: Which classes of chemical reactions evidence dramatic nonadiabatic behavior that influences the branching between energetically allowed reaction pathways? How do the intramolecular distance and orientation between the electronic orbitals involved influence the nonadiabaticity in the reaction? How can the detailed nuclear dynamics mediate the effective nonadiabatic coupling encountered in a chemical reaction?
Collapse
Affiliation(s)
- L J Butler
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
46
|
Viel A, Eisfeld W. Effects of higher order Jahn-Teller coupling on the nuclear dynamics. J Chem Phys 2004; 120:4603-13. [PMID: 15267319 DOI: 10.1063/1.1646371] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this paper effects of higher order Jahn-Teller coupling terms on the nonadiabatic dynamics are studied. Of particular interest is the case when the potential energy surfaces of the degenerate state show pronounced anharmonicity. In order to demonstrate the effects a two-dimensional E multiply sign in circle e Jahn-Teller model system is treated which is based on the e(') stretching vibration of the photoactive (2)E(') state of NO(3) as a realistic example. The sixth order E multiply sign in circle e Jahn-Teller Hamiltonian is derived in the diabatic representation which is valid for any system with a C(3) rotation axis. This diabatization scheme is compared to lower-order Jahn-Teller Hamiltonians and to symmetry adapted as well as ad hoc approximations. Lower-order potentials result in pronounced quantitative and qualitative differences in the dynamics, including differences in the evolution of mean values, the autocorrelation functions (and thus the corresponding spectra), and the electronic population evolution. In the particular example treated, the results of fourth and fifth order potentials are very similar to the sixth order reference system. In contrast, the approximate sixth order Hamiltonians, though the corresponding adiabatic surfaces seem to be nearly identical, results in pronounced differences. The possible consequences for the dynamics of realistic systems with higher dimensionality are briefly discussed.
Collapse
Affiliation(s)
- Alexandra Viel
- Lehrstuhl fur Theoretische Chemie, Technische Universitat Munchen, D-85747 Garching, Germany.
| | | |
Collapse
|
47
|
Jost R, Garcia Vergniory M, Campargue A. First determination of the NO2 Ã 2B2 stretching frequencies by jet cooled intracavity laser absorption spectroscopy around 11 000 cm−1. J Chem Phys 2003. [DOI: 10.1063/1.1587116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
48
|
Kurkal V, Fleurat-Lessard P, Schinke R. NO2: Global potential energy surfaces of the ground (1 2A1) and the first excited (1 2B2) electronic states. J Chem Phys 2003. [DOI: 10.1063/1.1580475] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Nakamura H, Truhlar DG. Extension of the fourfold way for calculation of global diabatic potential energy surfaces of complex, multiarrangement, non-Born–Oppenheimer systems: Application to HNCO(S0,S1). J Chem Phys 2003. [DOI: 10.1063/1.1540622] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
50
|
Troisi A, Orlandi G. Construction of electronic diabatic states within a molecular orbital scheme. J Chem Phys 2003. [DOI: 10.1063/1.1555118] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|