1
|
Saengha W, Karirat T, Pitisin N, Plangklang S, Butkhup L, Udomwong P, Ma NL, Konsue A, Chanthaket P, Katisart T, Luang-In V. Exploring the Bioactive Potential of Calostoma insigne, an Endangered Culinary Puffball Mushroom, from Northeastern Thailand. Foods 2023; 13:113. [PMID: 38201139 PMCID: PMC10778563 DOI: 10.3390/foods13010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Calostoma insigne puffball mushrooms are only found in forests with rich biodiversity in very few countries including Thailand, and their biofunctions remain largely unexplored. This study used the agar disk diffusion assay, the anti-glucosidase assay, and the 3, 4, 5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT) assay to evaluate the bioactive potential of these endangered puffball mushrooms. Internal transcribed spacer (ITS) gene analysis identified C. insigne, a puffball mushroom with green, globose, and spiny spores. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the polysaccharide structure while scanning electron microscopy (SEM) revealed a fiber-like network. The ethanolic gelatinous fruiting body extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging capacity (57.96%), a ferric ion-reducing antioxidant power (FRAP) value of 1.73 mg FeSO4/g, and α-glucosidase inhibition (73.18%). C. insigne cytotoxicity was effective towards HT-29 colon cancer cells using the MTT assay (IC50 of 770.6 µg/mL at 72 h) and also showed antiproliferative capacity (IC50 of 297.1 µg/mL). This puffball mushroom stimulated apoptotic genes and proteins (caspase-3, Bax, and p21) via an intrinsic apoptotic pathway in HT-29 cells. In the laboratory, the medium formula consisting of 20% potato, 2% sucrose, and 0.2% peptone was optimal to increase fungal mycelial biomass (2.74 g DW/100 mL), with propagation at pH 5.0 and 30 °C. Puffball mushrooms are consumed as local foods and also confer several potential health benefits, making them worthy of conservation for sustainable utilization.
Collapse
Affiliation(s)
- Worachot Saengha
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Thipphiya Karirat
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Nathanon Pitisin
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Supawadee Plangklang
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Luchai Butkhup
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| | - Piyachat Udomwong
- International College of Digital Innovation, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nyuk Ling Ma
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Ampa Konsue
- Thai Traditional Medicinal Research Unit, Division of Applied Thai Traditional Medicine, Faculty of Medicine, Mahasarakham University, Maha Sarakham 44000, Thailand;
| | | | - Teeraporn Katisart
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham 44150, Thailand;
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Maha Sarakham 44150, Thailand; (W.S.); (T.K.); (N.P.); (S.P.); (L.B.)
| |
Collapse
|
2
|
Wilson AW, Hobbie EA, Hibbett DS. The ectomycorrhizal status of Calostoma cinnabarinum determined using isotopic, molecular, and morphological methods. ACTA ACUST UNITED AC 2007. [DOI: 10.1139/b07-026] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calostoma cinnabarinum Corda belongs to the suborder Sclerodermatineae (Boletales), which includes many well-known ectomycorrhizal basidiomycetes, but the genus Calostoma has been described as saprotrophic. This study combines isotopic, molecular, and morphological techniques to determine the mode of nutrition of C. cinnabarinum. δ13C and δ15N measurements were compared among co-occurring C. cinnabarinum, ectomycorrhizal fungi, saprotrophic fungi, and ectomycorrhizal plants. Isotopic profiles of C. cinnabarinum resembled those of ectomycorrhizal fungi but not those of saprotrophic fungi. For molecular analyses, ectomycorrhizal root tips were extracted from soil cores collected beneath C. cinnabarinum fruit bodies. Nuclear ribosomal internal transcribed spacer (nrITS) sequences were obtained from ectomycorrhizal root tips using fungal-specific primers and screened against C. cinnabarinum nrITS sequences. Ectomycorrhizal root tips had nrITS sequences that matched C. cinnabarinum fruiting bodies. Root tips colonized by C. cinnabarinum were also described morphologically. Several morphological characters were shared between fruiting bodies and ectomycorrhizal root tips of C. cinnabarinum. Results of isotopic, molecular, and morphological analyses indicate that C. cinnabarinum is ectomycorrhizal. Molecular analysis and observations of plant associations suggest that C. cinnabarinum forms ectomycorrhizae with Quercus .
Collapse
Affiliation(s)
- Andrew W. Wilson
- Department of Biology, Clark University, Worcester, MA 01610, USA
- Complex Systems Research Center, Morse Hall, University of New Hampshire, Durham, NH 03824, USA
| | - Erik A. Hobbie
- Department of Biology, Clark University, Worcester, MA 01610, USA
- Complex Systems Research Center, Morse Hall, University of New Hampshire, Durham, NH 03824, USA
| | - David S. Hibbett
- Department of Biology, Clark University, Worcester, MA 01610, USA
- Complex Systems Research Center, Morse Hall, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|