1
|
Flores-Piña A, Valencia-Cantero E, Santoyo G. Underground fires shape the structure of microbial communities and select for thermophilic bacteria through a temperature gradient. Microbiol Res 2025; 292:127996. [PMID: 39671811 DOI: 10.1016/j.micres.2024.127996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
A detailed diversity analysis of the prokaryotic and fungal communities in soil impacted by an underground fire located in the Trans-Mexican volcanic belt, Mexico, is described. Microbial diversity data obtained from soils at different depths and temperatures (27 °C, 42 °C, 50 ºC and 54 ºC) were analyzed, and Firmicutes increased in abundance as the temperature augmented, and Proteobacteria mainly decreased in abundance at high temperatures compared to unaffected soils. The fungal phylum Ascomycota was the most abundant, with no significant changes. A clear reduction in the richness of both prokaryotic and eukaryotic operational taxonomic units (OTUs) was observed in the affected soils. At the genus level, Bacillus species were the most abundant among bacteria, while Aspergillus, Penicillium, and Mortierella were dominant fungal genera at higher temperatures. Interestingly, the physicochemical parameters of the affected soils modified organic matter, which was indirectly correlated with the presence of some microbial taxa. Likewise, we obtained 308 soil bacterial isolates from both control and affected soils. Among these, the taxa from the phyla Actinobacteria and Firmicutes demonstrated the highest thermotolerance in the affected soils. Our findings shed light on the impact of underground fires on the structure of microbial communities, favoring an abundance of thermotolerant microbes.
Collapse
Affiliation(s)
- Aurora Flores-Piña
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Eduardo Valencia-Cantero
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico
| | - Gustavo Santoyo
- Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Morelia, Michoacán 58030, Mexico.
| |
Collapse
|
2
|
Dutra YLG, Rosado AWC, Condé TO, Leão AF, Neves SDC, Fraga LMS, Kasuya MCM, Pereira OL. Two new Cladosporium species from a quartzite cave in Brazil. Braz J Microbiol 2023; 54:3021-3031. [PMID: 37880564 PMCID: PMC10689331 DOI: 10.1007/s42770-023-01156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
Caves are underground and natural environments mainly found in rocky terrain. Caves have a very specific microclimate, which benefits the occurrence of specific fungi. In recent studies, researchers have observed that caves harbour a great diversity of fungi. However, studies on fungal diversity in Brazilian caves are still incipient. In September 2019, airborne spore and soil samples were collected from the Monte Cristo cave, in the Southern Espinhaço Range, Diamantina, Minas Gerais state, Brazil. Two Cladosporium single-spore isolates, among other genera, were obtained from these samples. This study aimed to characterise these two fungal isolates based on their DNA sequence data and morphology. Phylogenetic analyses of the rDNA-ITS, ACT and TEF1-α loci revealed that the isolates belonged to the Cladosporium cladosporioides species complex. Both isolates did not cluster with any known species and were formally described and named herein as C. diamantinense and C. speluncae. This study presents taxonomic novelties and contributes to the knowledge about the fungal diversity in Brazilian caves.
Collapse
Affiliation(s)
- Yan Lucas Gomes Dutra
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - André Wilson Campos Rosado
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Thiago Oliveira Condé
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Ana Flávia Leão
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Soraya de Carvalho Neves
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | - Lucio Mauro Soares Fraga
- Instituto de Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, 39100-000, Brazil
| | | | - Olinto Liparini Pereira
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
3
|
da Silva NMP, Guterres DC, Borges LS, Barreto RW, Furtado GQ. Surveying potentially antagonistic fungi to myrtle rust (Austropuccinia psidii) in Brazil: fungicolous Cladosporium spp. Braz J Microbiol 2023; 54:1899-1914. [PMID: 37389796 PMCID: PMC10484887 DOI: 10.1007/s42770-023-01047-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 07/01/2023] Open
Abstract
The myrtle rust (MR), caused by Austropuccinia psidii, is a worldwide threat to the cultivated and wild Myrtaceae. Originally from the neotropics, it has spread to North America, Africa, and Asia and has reached geographically isolated areas in the Pacific and Australasia. It is attacking native species in those new ranges and is still spreading and causing great concern for the damage caused to endemic Myrtaceae, and to the environment. Classical biological control is regarded as the most sustainable management option for mitigating such biological invasions. However, there are no examples of introductions of host-specific co-evolved natural enemies of plant pathogens, from their native range, as a management strategy for plant pathogens. In order to explore this neglected approach, a survey of potential fungal natural enemies of A. psidii was initiated recently in the state of Minas Gerais (Brazil). Several purported mycoparasites have been collected from A. Psidii pustules formed on myrtaceous hosts. This included some isolates of dematiaceous fungi recognized as having a Cladosporium-like morphology. Here we present the results of the investigation aimed at elucidating their identity through a polyphasic taxonomic approach. Besides morphological and cultural features, molecular analyses using sequences of translation elongation factor 1-α (EF1) and actin (ACT) were performed. The combination of data generated is presented herein and placed all Cladosporium-like isolates in six species of Cladosporium, namely, Cladosporium angulosum, C. anthropophilum, C. bambusicola, C. benschii, C. guizhouense, and C. macadamiae. None of these have ever been recorded in association with A. psidii. Now, with the identification of these isolates at hand, an evaluation of biocontrol potential of these fungi will be initiated. In contrast with the ready finding of fungicolous (possibly mycoparasitic) fungi on MR in this study, no evidence of those was recorded from Australasia until now.
Collapse
Affiliation(s)
| | | | - Luísa Salvador Borges
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Robert Weingart Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Gleiber Quintão Furtado
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
4
|
Rolon ML, Tan X, Chung T, Gonzalez-Escalona N, Chen Y, Macarisin D, LaBorde LF, Kovac J. The composition of environmental microbiota in three tree fruit packing facilities changed over seasons and contained taxa indicative of L. monocytogenes contamination. MICROBIOME 2023; 11:128. [PMID: 37271802 DOI: 10.1186/s40168-023-01544-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/06/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Listeria monocytogenes can survive in cold and wet environments, such as tree fruit packing facilities and it has been implicated in outbreaks and recalls of tree fruit products. However, little is known about microbiota that co-occurs with L. monocytogenes and its stability over seasons in tree fruit packing environments. In this 2-year longitudinal study, we aimed to characterize spatial and seasonal changes in microbiota composition and identify taxa indicative of L. monocytogenes contamination in wet processing areas of three tree fruit packing facilities (F1, F2, F3). METHODS A total of 189 samples were collected during two apple packing seasons from floors under the washing, drying, and waxing areas. The presence of L. monocytogenes was determined using a standard culturing method, and environmental microbiota was characterized using amplicon sequencing. PERMANOVA was used to compare microbiota composition among facilities over two seasons, and abundance-occupancy analysis was used to identify shared and temporal core microbiota. Differential abundance analysis and random forest were applied to detect taxa indicative of L. monocytogenes contamination. Lastly, three L. monocytogenes-positive samples were sequenced using shotgun metagenomics with Nanopore MinION, as a proof-of-concept for direct detection of L. monocytogenes' DNA in environmental samples. RESULTS The occurrence of L. monocytogenes significantly increased from 28% in year 1 to 46% in year 2 in F1, and from 41% in year 1 to 92% in year 2 in F3, while all samples collected from F2 were L. monocytogenes-positive in both years. Samples collected from three facilities had a significantly different microbiota composition in both years, but the composition of each facility changed over years. A subset of bacterial taxa including Pseudomonas, Stenotrophomonas, and Microbacterium, and fungal taxa, including Yarrowia, Kurtzmaniella, Cystobasidium, Paraphoma, and Cutaneotrichosporon, were identified as potential indicators of L. monocytogenes within the monitored environments. Lastly, the DNA of L. monocytogenes was detected through direct Nanopore sequencing of metagenomic DNA extracted from environmental samples. CONCLUSIONS This study demonstrated that a cross-sectional sampling strategy may not accurately reflect the representative microbiota of food processing facilities. Our findings also suggest that specific microorganisms are indicative of L. monocytogenes, warranting further investigation of their role in the survival and persistence of L. monocytogenes. Video Abstract.
Collapse
Affiliation(s)
- M Laura Rolon
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Xiaoqing Tan
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Taejung Chung
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
- Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Narjol Gonzalez-Escalona
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, 20740, USA
| | - Yi Chen
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, 20740, USA
| | - Dumitru Macarisin
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, 20740, USA
| | - Luke F LaBorde
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jasna Kovac
- Department of Food Science, The Pennsylvania State University, University Park, PA, 16802, USA.
- Microbiome Center, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
5
|
Lee W, Kim JS, Seo CW, Lee JW, Kim SH, Cho Y, Lim YW. Diversity of Cladosporium (Cladosporiales, Cladosporiaceae) species in marine environments and report on five new species. MycoKeys 2023; 98:87-111. [PMID: 37305062 PMCID: PMC10257140 DOI: 10.3897/mycokeys.98.101918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Cladosporium species are cosmopolitan fungi, characterized by olivaceous or dark colonies with coronate conidiogenous loci and conidial hila with a central convex dome surrounded by a raised periclinal rim. Cladosporium species have also been discovered in marine environments. Although many studies have been performed on the application of marine originated Cladosporium species, taxonomic studies on these species are scarce. We isolated Cladosporium species from three under-studied habitats (sediment, seawater, and seaweed) in two districts including an intertidal zone in the Republic of Korea and the open sea in the Western Pacific Ocean. Based on multigenetic marker analyses (for the internal transcribed spacer, actin, and translation elongation factor 1), we identified fourteen species, of which five were found to represent new species. These five species were C.lagenariiformesp. nov., C.maltirimosumsp. nov., C.marinumsp. nov. in the C.cladosporioides species complex, C.snafimbriatumsp. nov. in the C.herbarum species complex, and C.marinisedimentumsp. nov. in the C.sphaerospermum species complex. Morphological characteristics of the new species and aspects of differences with the already known species are described herein together with molecular data.
Collapse
Affiliation(s)
- Wonjun Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of KoreaSeoul National UniversitySeoulRepublic of Korea
| | - Ji Seon Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of KoreaSeoul National UniversitySeoulRepublic of Korea
| | - Chang Wan Seo
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of KoreaSeoul National UniversitySeoulRepublic of Korea
| | - Jun Won Lee
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of KoreaSeoul National UniversitySeoulRepublic of Korea
| | - Sung Hyun Kim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of KoreaSeoul National UniversitySeoulRepublic of Korea
| | - Yoonhee Cho
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of KoreaSeoul National UniversitySeoulRepublic of Korea
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Republic of KoreaSeoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
6
|
Yang Y, Luo W, Zhang W, Mridha MAU, Wijesinghe SN, McKenzie EHC, Wang Y. Cladosporium Species Associated with Fruit Trees in Guizhou Province, China. J Fungi (Basel) 2023; 9:jof9020250. [PMID: 36836364 PMCID: PMC9962058 DOI: 10.3390/jof9020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
During an investigation of fungal diversity on fruit trees in Guizhou Province, 23 Cladosporium strains were isolated from various locations in Guizhou Province. Culture characteristics, morphology and molecular phylogenetic analysis of three genetic markers, namely, the internal transcribed spacer regions (ITS) of the rDNA, partial fragments of actin (act), and the translation elongation factor 1-α (tef1-ɑ) loci were used to characterize these isolates. Seven new Cladosporium species and new host records for five other species were introduced, with detailed descriptions and illustrations. This study showed that there is a rich diversity of Cladosporium spp. in fruit trees in Guizhou Province.
Collapse
Affiliation(s)
- Yuanqiao Yang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China
| | - Wenmei Luo
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China
| | - Wensong Zhang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China
| | | | | | | | - Yong Wang
- Department of Plant Pathology, Agriculture College, Guizhou University, Guiyang 550025, China
- Correspondence: or
| |
Collapse
|
7
|
Witty M. Examples of potato epidermis endophytes and rhizosphere microbes that may be human pathogens contributing to potato peel colic. ACTA ALIMENTARIA 2022. [DOI: 10.1556/066.2021.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Potato tubers defend themselves against herbivores with endogenous secondary compounds such as solanine and scopolamine. They also recruit endophytes and members of the tuberosphere to repel herbivores. Many of these endophyte defence features are overcome by cooking, with some notable exceptions that have been identified by rDNA analysis of potato peel samples and may account for some previously unrecognised features of potato peel colic. This is relevant regarding the rather modern way of cooking, where the potato peel is left intact in food and consumed.
Collapse
Affiliation(s)
- M. Witty
- Math and Science Department, School of Pure and Applied Sciences, Florida SouthWestern State College, 8099 College Parkway, Fort Myers, Florida 33919, USA
| |
Collapse
|
8
|
Prasannath K, Shivas RG, Galea VJ, Akinsanmi OA. Novel Botrytis and Cladosporium Species Associated with Flower Diseases of Macadamia in Australia. J Fungi (Basel) 2021; 7:898. [PMID: 34829187 PMCID: PMC8622590 DOI: 10.3390/jof7110898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/31/2022] Open
Abstract
Macadamia (Macadamia integrifolia) is endemic to eastern Australia and produces an edible nut that is widely cultivated in commercial orchards globally. A survey of fungi associated with the grey and green mold symptoms of macadamia flowers found mostly species of Botrytis (Sclerotiniaceae, Leotiomycetes) and Cladosporium (Cladosporiaceae, Dothideomycetes). These isolates included B. cinerea, C. cladosporioides, and unidentified isolates. Amongst the unidentified isolates, one novel species of Botrytis and three novel species of Cladosporium were delimited and characterized by molecular phylogenetic analyses. The new species are Botrytis macadamiae, Cladosporium devikae, C. macadamiae, and C. proteacearum.
Collapse
Affiliation(s)
- Kandeeparoopan Prasannath
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| | - Roger G. Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD 4350, Australia;
| | - Victor J. Galea
- School of Agriculture & Food Sciences, The University of Queensland, Gatton, QLD 4343, Australia;
| | - Olufemi A. Akinsanmi
- Queensland Alliance for Agriculture & Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, QLD 4102, Australia
| |
Collapse
|
9
|
Zimowska B, Becchimanzi A, Krol ED, Furmanczyk A, Bensch K, Nicoletti R. New Cladosporium Species from Normal and Galled Flowers of Lamiaceae. Pathogens 2021; 10:pathogens10030369. [PMID: 33808618 PMCID: PMC8003538 DOI: 10.3390/pathogens10030369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/09/2023] Open
Abstract
A series of isolates of Cladosporium spp. were recovered in the course of a cooperative study on galls formed by midges of the genus Asphondylia (Diptera, Cecidomyidae) on several species of Lamiaceae. The finding of these fungi in both normal and galled flowers was taken as an indication that they do not have a definite relationship with the midges. Moreover, identification based on DNA sequencing showed that these isolates are taxonomically heterogeneous and belong to several species which are classified in two different species complexes. Two new species, Cladosporium polonicum and Cladosporium neapolitanum, were characterized within the Cladosporium cladosporioides species complex based on strains from Poland and Italy, respectively. Evidence concerning the possible existence of additional taxa within the collective species C. cladosporioides and C. pseudocladosporioides is discussed.
Collapse
Affiliation(s)
- Beata Zimowska
- Department of Plant Protection, University of Life Sciences, 20-068 Lublin, Poland; (B.Z.); (E.D.K.); (A.F.)
| | - Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Ewa Dorota Krol
- Department of Plant Protection, University of Life Sciences, 20-068 Lublin, Poland; (B.Z.); (E.D.K.); (A.F.)
| | - Agnieszka Furmanczyk
- Department of Plant Protection, University of Life Sciences, 20-068 Lublin, Poland; (B.Z.); (E.D.K.); (A.F.)
| | - Konstanze Bensch
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands;
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, 81100 Caserta, Italy
- Correspondence:
| |
Collapse
|
10
|
Colmán AA, Evans HC, Salcedo-Sarmiento SS, Braun U, Belachew-Bekele K, Barreto RW. A fungus-eat-fungus world: Digitopodium, with particular reference to mycoparasites of the coffee leaf rust, Hemileia vastatrix. IMA Fungus 2021; 12:1. [PMID: 33402223 PMCID: PMC7784264 DOI: 10.1186/s43008-020-00052-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/15/2020] [Indexed: 11/25/2022] Open
Abstract
Digitopodium hemileiae was described originally in 1930 as Cladosporium hemileiae; growing as a mycoparasite of the coffee leaf rust (CLR), Hemileia vastatrix, in a sample of diseased leaves of Coffea canephora collected in the Democratic Republic of Congo. No cultures from this material exist. More recently, the type material was re-examined and, based on morphological features, considered to be incorrectly placed in Cladosporium. The new genus Digitopodium was erected to accommodate this species. Interest in fungal antagonists of H. vastarix, as potential biocontrol agents of CLR, led to comprehensive surveys for mycoparasites, both in the African centre of origin of the rust, as well as in its South American exotic range. Among the rust specimens from Ethiopia, one was found to be colonized by a fungus congeneric with, and similar to, D. hemileiae. Pure cultures obtained from the Ethiopian material enabled a molecular study and for its phylogenetic position to be elucidated, based on DNA sequence data from the ITS and LSU regions. Molecular data showed that two members of the recently erected genus Hyalocladosporiella (Herpotrichiellaceae: Chaetothyriales) are congeneric with Digitopodium from Ethiopia and morphologically similar to both D. hemileiae and the two Ethiopian isolates. These isolates were found to be morphologically and genetically identical to H. tectonae, described previously from Brazil. Thus, species of Hyalocladosporiella are re-allocated to Digitopodium here; including D. tectonae, and a novel species, D. canescens, recently found in Brazil growing as a mycoparasite of Puccinia thaliae. The potential use of D. hemileiae and D. tectonae for classical biological control of CLR is discussed.
Collapse
Affiliation(s)
- Adans A Colmán
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Harry C Evans
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- CAB International, UK Centre, Egham, Surrey, TW20 9TY, UK
| | | | - Uwe Braun
- Martin Luther University Halle, Institute of Biology, Department of Geobotany and Botanical Garden, Herbarium, Neuwerk 21, 06099, Halle (Saale), Germany
| | | | - Robert W Barreto
- Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
11
|
Iturrieta-González I, García D, Gené J. Novel species of Cladosporium from environmental sources in Spain. MycoKeys 2021; 77:1-25. [PMID: 33510579 PMCID: PMC7803722 DOI: 10.3897/mycokeys.77.60862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 01/12/2023] Open
Abstract
Cladosporium is a monophyletic genus in Cladosporiaceae (Cladosporiales, Dothideomycetes) whose species are mainly found as saprobes and endophytes, but it also includes fungi pathogenic for plants, animals and human. Species identification is currently based on three genetic markers, viz., the internal transcribed spacer regions (ITS) of the rDNA, and partial fragments of actin (act) and the translation elongation factor 1-α (tef1) genes. Using this phylogenetic approach and from morphological differences, we have recognized six new species originating from soil, herbivore dung and plant material collected at different Spanish locations. They are proposed as Cladosporiumcaprifimosum, C.coprophilum, C.fuscoviride and C.lentulum belonging in the C.cladosporioides species complex, and C.pseudotenellum and C.submersum belonging in the C.herbarum species complex. This study revealed that herbivore dung represented a reservoir of novel lineages in the genus Cladosporium.
Collapse
Affiliation(s)
- Isabel Iturrieta-González
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, 43201, Reus, Tarragona, Spain Universitat Rovira i Virgili Reus Spain
| | - Dania García
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, 43201, Reus, Tarragona, Spain Universitat Rovira i Virgili Reus Spain
| | - Josepa Gené
- Unitat de Micologia, Facultat de Medicina i Ciències de la Salut and IISPV, Universitat Rovira i Virgili, 43201, Reus, Tarragona, Spain Universitat Rovira i Virgili Reus Spain
| |
Collapse
|
12
|
Jayawardena RS, Hyde KD, Chen YJ, Papp V, Palla B, Papp D, Bhunjun CS, Hurdeal VG, Senwanna C, Manawasinghe IS, Harischandra DL, Gautam AK, Avasthi S, Chuankid B, Goonasekara ID, Hongsanan S, Zeng X, Liyanage KK, Liu N, Karunarathna A, Hapuarachchi KK, Luangharn T, Raspé O, Brahmanage R, Doilom M, Lee HB, Mei L, Jeewon R, Huanraluek N, Chaiwan N, Stadler M, Wang Y. One stop shop IV: taxonomic update with molecular phylogeny for important phytopathogenic genera: 76–100 (2020). FUNGAL DIVERS 2020. [DOI: 10.1007/s13225-020-00460-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AbstractThis is a continuation of a series focused on providing a stable platform for the taxonomy of phytopathogenic fungi and fungus-like organisms. This paper focuses on one family: Erysiphaceae and 24 phytopathogenic genera: Armillaria, Barriopsis, Cercospora, Cladosporium, Clinoconidium, Colletotrichum, Cylindrocladiella, Dothidotthia,, Fomitopsis, Ganoderma, Golovinomyces, Heterobasidium, Meliola, Mucor, Neoerysiphe, Nothophoma, Phellinus, Phytophthora, Pseudoseptoria, Pythium, Rhizopus, Stemphylium, Thyrostroma and Wojnowiciella. Each genus is provided with a taxonomic background, distribution, hosts, disease symptoms, and updated backbone trees. Species confirmed with pathogenicity studies are denoted when data are available. Six of the genera are updated from previous entries as many new species have been described.
Collapse
|
13
|
Disayathanoowat T, Li H, Supapimon N, Suwannarach N, Lumyong S, Chantawannakul P, Guo J. Different Dynamics of Bacterial and Fungal Communities in Hive-Stored Bee Bread and Their Possible Roles: A Case Study from Two Commercial Honey Bees in China. Microorganisms 2020; 8:microorganisms8020264. [PMID: 32075309 PMCID: PMC7074699 DOI: 10.3390/microorganisms8020264] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022] Open
Abstract
This study investigated both bacterial and fungal communities in corbicular pollen and hive-stored bee bread of two commercial honey bees, Apis mellifera and Apis cerana, in China. Although both honey bees favor different main floral sources, the dynamics of each microbial community is similar. During pH reduction in hive-stored bee bread, results from conventional culturable methods and next-generation sequencing showed a declining bacterial population but a stable fungal population. Different honey bee species and floral sources might not affect the core microbial community structure but could change the number of bacteria. Corbicular pollen was colonized by the Enterobacteriaceae bacterium (Escherichia-Shiga, Panteoa, Pseudomonas) group; however, the number of bacteria significantly decreased in hive-stored bee bread in less than 72 h. In contrast, Acinetobacter was highly abundant and could utilize protein sources. In terms of the fungal community, the genus Cladosporium remained abundant in both corbicular pollen and hive-stored bee bread. This filamentous fungus might encourage honey bees to reserve pollen by releasing organic acids. Furthermore, several filamentous fungi had the potential to inhibit both commensal/contaminant bacteria and the growth of pathogens. Filamentous fungi, in particular, the genus Cladosporium, could support pollen preservation of both honey bee species.
Collapse
Affiliation(s)
- Terd Disayathanoowat
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Correspondence: (T.D.); (J.G.)
| | - HuanYuan Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
| | - Natapon Supapimon
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
| | - Nakarin Suwannarach
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Saisamorn Lumyong
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
| | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (N.S.); (N.S.); (S.L.); (P.C.)
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
- Correspondence: (T.D.); (J.G.)
| |
Collapse
|
14
|
Tibpromma S, Mortimer PE, Karunarathna SC, Zhan F, Xu J, Promputtha I, Yan K. Morphology and Multi-Gene Phylogeny Reveal Pestalotiopsis pinicola sp. nov. and a New Host Record of Cladosporium anthropophilum from Edible Pine ( Pinus armandii) Seeds in Yunnan Province, China. Pathogens 2019; 8:E285. [PMID: 31817121 PMCID: PMC6963873 DOI: 10.3390/pathogens8040285] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 11/17/2022] Open
Abstract
This study contributes new knowledge on the diversity of conidial fungi in edible pine (Pinus armandii) seeds found in Yunnan Province, China and emphasizes the importance of edible seed products to ensure food safety standards. We isolated two fungal species, one on the pine seed coat and the other on the endosperm of the pine seed. The two fungal species were identified as Pestalotiopsis pinicola sp. nov. and a new host record Cladosporium anthropophilum. Characteristic morphological features of Pestalotiopsis pinicola were used alongside results from multi-gene phylogenetic analysis to distinguish it from currently known species within the genus. Cladosporium anthropophilum was identified as a new host record based on morphological features and phylogenetic analysis. In addition, detailed descriptions, scanned electron microscopy morphology, illustrations, and phylogenetic trees are provided to show the placement of these species.
Collapse
Affiliation(s)
- Saowaluck Tibpromma
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China; (S.T.); (F.Z.)
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| | - Samantha C. Karunarathna
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| | - Fangdong Zhan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China; (S.T.); (F.Z.)
| | - Jianchu Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine, Department of Biology, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai 50200, Thailand
| | - Kai Yan
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, Yunnan, China; (S.T.); (F.Z.)
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China; (S.C.K.); (J.X.)
| |
Collapse
|
15
|
Gibbons AT, Idnurm A, Seiter M, Dyer PS, Kokolski M, Goodacre SL, Gorb SN, Wolff JO. Amblypygid-fungal interactions: The whip spider exoskeleton as a substrate for fungal growth. Fungal Biol 2019; 123:497-506. [DOI: 10.1016/j.funbio.2019.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/11/2019] [Accepted: 05/01/2019] [Indexed: 12/15/2022]
|
16
|
Ma R, Huang H, Bai Y, Luo H, Fan Y, Yao B. Insight into the cold adaptation and hemicellulose utilization of Cladosporium neopsychrotolerans from genome analysis and biochemical characterization. Sci Rep 2018; 8:6075. [PMID: 29666397 PMCID: PMC5904165 DOI: 10.1038/s41598-018-24443-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 03/20/2018] [Indexed: 11/30/2022] Open
Abstract
The occurrence of Cladosporium in cold ecosystems has been evidenced long before, and most of the knowledge about nutrient utilization of this genus is sporadic. An alpine soil isolate C. neopsychrotolerans SL-16, showing great cold tolerance and significant lignocellulose-degrading capability, was sequenced to form a 35.9 Mb genome that contains 13,456 predicted genes. Functional annotation on predicted genes revealed a wide array of proteins involved in the transport and metabolism of carbohydrate, protein and lipid. Large numbers of transmembrane proteins (967) and CAZymes (571) were identified, and those related to hemicellulose degradation was the most abundant. To undermine the hemicellulose (xyaln as the main component) utilization mechanism of SL-16, the mRNA levels of 23 xylanolytic enzymes were quantified, and representatives of three glycoside hydrolase families were functionally characterized. The enzymes showed similar neutral, cold active and thermolabile properties and synergistic action on xylan degradation (the synergy degree up to 15.32). Kinetic analysis and sequence and structure comparison with mesophilic and thermophilic homologues indicated that these cold-active enzymes employed different cold adaptation strategies to function well in cold environment. These similar and complementary advantages in cold adaptation and catalysis might explain the high efficiency of lignocellulose conversion observed in SL-16 under low temperatures.
Collapse
Affiliation(s)
- Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Biotechnology Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yunliu Fan
- Biotechnology Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
17
|
Abstract
As part of a worldwide survey of the indoor mycobiota about 520 new Cladosporium isolates from indoor environments mainly collected in China, Europe, New Zealand, North America and South Africa were investigated by using a polyphasic approach to determine their species identity. All Cladosporium species occurring in indoor environments are fully described and illustrated. Fourty-six Cladosporium species are treated of which 16 species are introduced as new. A key for the most common Cladosporium species isolated from indoor environments is provided. Cladosporium halotolerans proved to be the most frequently isolated Cladosporium species indoors.
Collapse
|