1
|
Du M, Wang T, Li C, Chen T. Discovery and Characterization of Epichloë Fungal Endophytes from Elymus spp. in Northwest China. Microorganisms 2024; 12:1497. [PMID: 39065265 PMCID: PMC11278780 DOI: 10.3390/microorganisms12071497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/09/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Epichloë fungal endophytes hold promise in sustainable agriculture by fortifying cool-season grasses such as Elymus spp. against various stresses. Elymus spp. are widely distributed in Northwest China with a high incidence of endophyte infections. In this study, we identified 20 Epichloë endophytic fungal strains carried by five Elymus spp. from five areas of Northwest China and systematically characterized their morphology, molecular phylogeny, mating type, and alkaloid diversity for the first time. The morphological characterization underscores strain diversity, with variable colony textures and growth rates. A phylogenetic analysis confirms all strains are E. bromicola, emphasizing their taxonomic status. Alkaloid-encoding gene profiling delineates distinct alkaloid synthesis capabilities among the strains, which are crucial for host adaptability and resistance. A mating-type analysis reveals uniformity (mtAC) across the Epichloë strains, simplifying breeding strategies. Notably, the Epichloë strains exhibit diverse alkaloid synthesis gene profiles, impacting host interactions. This research emphasizes the ecological significance of Epichloë endophytes in Elymus spp. ecosystems, offering insights into their genetic diversity and potential applications in sustainable agriculture.
Collapse
Affiliation(s)
- Mingxiang Du
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (M.D.); (T.W.); (C.L.)
| | - Tian Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (M.D.); (T.W.); (C.L.)
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (M.D.); (T.W.); (C.L.)
- Grassland Research Center of National Forestry and Grassland Administration, Chinese Academy of Forestry, Beijing 100091, China
| | - Taixiang Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China; (M.D.); (T.W.); (C.L.)
| |
Collapse
|
2
|
Chen T, Wang T, Du M, Malik K, Li C, Bao G. Discovery of Epichloë as novel endophytes of Psathyrostachys lanuginosa in China and their alkaloid profiling. Front Microbiol 2024; 15:1383923. [PMID: 38846569 PMCID: PMC11153765 DOI: 10.3389/fmicb.2024.1383923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
The Epichloë genus represents a significant group of above-ground endophytes extensively researched for their potential applications in agriculture and ecology. Additionally, Epichloë species synthesize bioactive alkaloids, which generally cause health problems in livestock and have detrimental effects on the performance of insect herbivores. Psathyrostachys lanuginosa serves as a valuable forage grass for livestock owing to its high nutritional value and resilience in adverse environmental conditions. Nevertheless, to date, no reports have documented Epichloë as endophytes of P. lanuginosa. In this study, four strains (PF5, PF9, QG2, and QG4) were isolated and identified through morphological, molecular, and phylogenetic analyses as endophytes of P. lanuginosa. Morphological analysis indicated colony characteristics and conidia features consistent with symbiotic Epichloë, with no significant differences observed in growth rates or conidia dimensions among the four strains. Phylogenetic analysis confirmed all strains as E. bromicola. Additionally, alkaloid biosynthetic genes were detected, revealing differences in the potential synthesis of peramine and indole diterpenoid alkaloids among strains from different geographic origins. However, all four E. bromicola strains exhibited similar potential for synthesizing ergot alkaloids, but not loline alkaloids. Overall, this study identified P. lanuginosa as a novel host for E. bromicola and provided insights into the alkaloid profiles of these strains, laying a solid foundation for the scientific and rational utilization of Epichloë resources.
Collapse
Affiliation(s)
- Taixiang Chen
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tian Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Mingxiang Du
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Kamran Malik
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Gansu Tech Innovation Centre of Western China Grassland Industry, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Gensheng Bao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Qinghai Academy of Animal and Veterinary Medicine, Xining, China
| |
Collapse
|
3
|
Deng Y, Yu X, Yin J, Chen L, Zhao N, Gao Y, Ren A. Epichloë Endophyte Enhanced Insect Resistance of Host Grass Leymus Chinensis by Affecting Volatile Organic Compound Emissions. J Chem Ecol 2023:10.1007/s10886-023-01459-6. [PMID: 37917413 DOI: 10.1007/s10886-023-01459-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/03/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023]
Abstract
In plant-herbivore interactions, plant volatile organic compounds (VOCs) play an important role in anti-herbivore defense. Grasses and Epichloë endophytes often form defensive mutualistic symbioses. Most Epichloë species produce alkaloids to protect hosts from herbivores, but there is no strong evidence that endophytes can affect the insect resistance of their hosts by altering VOC emissions. In this study, a native dominant grass, sheepgrass (Leymus chinensis), and its herbivore, oriental migratory locust (Locusta migratoria), were used as experimental materials. We studied the effect of endophyte-associated VOC emissions on the insect resistance of L. chinensis. The results showed that endophyte infection enhanced insect resistance of the host, and locusts preferred the odor of endophyte-free (EF) leaves to that of endophyte-infected (EI) leaves. We determined the VOC profile of L. chinensis using gas chromatography-mass spectrometry (GC-MS), and found that endophyte infection decreased the pentadecane (an alkane) emission from uneaten plants, and increased the nonanal (an aldehyde) emission from eaten plants. The olfactory response experiment showed that locusts were attracted by high concentration of pentadecane, while repelled by high concentration of nonanal, indicating that Epichloë endophytes may increase locust resistance of L. chinensis by decreasing pentadecane while increasing nonanal emission. Our results suggest that endophytes can induce VOC-mediated defense in hosts in addition to producing alkaloids, contributing to a better understanding the endophyte-plant-herbivore interactions.
Collapse
Affiliation(s)
- Yongkang Deng
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinhe Yu
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jiaqi Yin
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lei Chen
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Nianxi Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yubao Gao
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Anzhi Ren
- College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
4
|
Han D, Wang K, Long F, Zhang W, Yao X, Chen S. Effects of endophytic fungi on the secondary metabolites of Hordeum bogdanii under alkaline stress. AMB Express 2022; 12:73. [PMID: 35701557 PMCID: PMC9198191 DOI: 10.1186/s13568-022-01414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
It is currently unclear whether the mechanism of endophytic fungi improving the alkali tolerance of Hordeum bogdanii affects secondary metabolites. Unveiling this knowledge is crucial for understanding the tolerance mechanism of H. bogdanii to alkaline stress. The aim of this study was to investigate how endophytic fungi affect secondary metabolites of H. bogdanii under alkaline stress at different concentrations. Endophyte-infected (E +) and endophyte-free (E−) individuals of H. bogdanii were used as materials in this study. The method of indoor vermiculite aseptic planting was adopted. After mixed alkali stress treatment, the roots, stems, and leaves of the plants were collected to measure the indicators related to secondary metabolites. The results showed that endophytic fungi improved the alkali resistance of H. bogdanii by improving the related indicators of secondary metabolites. endophytic fungi significantly increased the contents of phosphorus, polyphenols, and alkaloids, and the activities of polyphenol oxidase and acid phosphatase, and significantly reduced flavonoid content. The content of polyphenols and alkaloids in stems, polyphenol oxidase activity in stems and leaves, and acid phosphatase activity in leaves were significantly affected. The findings of this study may aid in amplifying the alkali resistance mechanism of endophytic fungi to H. bogdanii as well as provide insights into improving the alkali resistance of other plants.
Collapse
Affiliation(s)
- Dan Han
- Key Laboratory of Biological Resources Protection and Utilization Corps in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, 843300, Alar, China
| | - Kai Wang
- College of Animal Sciences, Tarim University, Xinjiang, 843300, Alar, China
| | - Feng Long
- Key Laboratory of Biological Resources Protection and Utilization Corps in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, 843300, Alar, China
| | - Wangbin Zhang
- College of Plant Sciences, Tarim University, Xinjiang, 843300, Alar, China
| | - Xiang Yao
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, Jiangsu, China
| | - Shuihong Chen
- Key Laboratory of Biological Resources Protection and Utilization Corps in Tarim Basin, College of Life Sciences, Tarim University, Xinjiang, 843300, Alar, China.
| |
Collapse
|
5
|
von Cräutlein M, Helander M, Korpelainen H, Leinonen PH, Vázquez de Aldana BR, Young CA, Zabalgogeazcoa I, Saikkonen K. Genetic Diversity of the Symbiotic Fungus Epichloë festucae in Naturally Occurring Host Grass Populations. Front Microbiol 2021; 12:756991. [PMID: 34925265 PMCID: PMC8678516 DOI: 10.3389/fmicb.2021.756991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/29/2021] [Indexed: 11/20/2022] Open
Abstract
Epichloë festucae is a common symbiont of the perennial and widely distributed cool season grass, Festuca rubra. The symbiosis is highly integrated involving systemic growth of the fungus throughout above-ground host parts and vertical transmission from plant to its offspring via host seeds. However, the nature of symbiosis is labile ranging from antagonistic to mutualistic depending on prevailing selection pressures. Both the loss of fungus in the maternal host lineage and horizontal transmission through sexual spores within the host population may partly explain the detected variation in symbiosis in wild grass populations. Epichloë species are commonly considered as pathogens when they produce sexual spores and partly castrate their host plant. This is the pathogenic end of the continuum from antagonistic to mutualistic interactions. Here we examined the population genetic structure of E. festucae to reveal the gene flow, importance of reproduction modes, and alkaloid potential of the symbiotic fungus in Europe. Epichloë-species are highly dependent on the host in survival and reproduction whilst benefits to the host are largely linked to defensive mutualism attributable to fungal-origin bioactive alkaloids that negatively affect vertebrate and/or invertebrate herbivores. We detected decreased genetic diversity in previously glaciated areas compared to non-glaciated regions during the last glacial maximum period and found three major genetic clusters in E. festucae populations: southern, northeastern and northwestern Europe. Sexual reproduction may have a higher role than expected in Spanish E. festucae populations due to the predominance of unique genotypes and presence of both mating types in the region. In contrast, asexual reproduction via host seeds predominates in the Faroe Island and Finland in northern Europe due to the presence of biased mating-type ratios and large dominant genotypes in the E. festucae populations within the region. A substantially larger variation of alkaloid genotypes was observed in the fungal populations than expected, although the variability of the alkaloid genotypes within populations is considerably lower in northern than Spanish populations in southern Europe. E. festucae populations consist of different combinations of alkaloid classes from the gene clusters of ergot alkaloid and indole-terpenes, and from pyrrolopyrazine alkaloid gene. We suggest that the postglacial distribution history of the host grass, prevailing reproduction strategies of E. festucae, and local selection pressures likely explain a large part of the genetic variation observed in fungal populations among geographic regions. The identified alkaloid genotypes can be used by turfgrass breeders to improve resistance against herbivores in red fescue varieties and to develop new sustainable cultivars in Europe.
Collapse
Affiliation(s)
- Maria von Cräutlein
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.,Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Helsinki, Finland.,Biodiversity Unit, University of Turku, Turku, Finland
| | - Marjo Helander
- Department of Biology, University of Turku, Turku, Finland
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Päivi Helena Leinonen
- Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Helsinki, Finland.,Biodiversity Unit, University of Turku, Turku, Finland
| | - Beatriz R Vázquez de Aldana
- Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (CSIC), Salamanca, Spain
| | | | - Iñigo Zabalgogeazcoa
- Institute of Natural Resources and Agrobiology of Salamanca, Spanish National Research Council (CSIC), Salamanca, Spain
| | - Kari Saikkonen
- Biodiversity Unit, University of Turku, Turku, Finland.,Management and Production of Renewable Resources, Natural Resources Institute Finland (Luke), Turku, Finland
| |
Collapse
|
6
|
Cagnano G, Lenk I, Roulund N, Jensen CS, Cox MP, Asp T. Mycelial biomass and concentration of loline alkaloids driven by complex population structure in Epichloë uncinata and meadow fescue ( Schedonorus pratensis). Mycologia 2020; 112:474-490. [PMID: 32412888 DOI: 10.1080/00275514.2020.1746607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Many efforts have been made to select and isolate naturally occurring animal-friendly Epichloë strains for later reinfection into elite cultivars. Often this process involves large-scale screening of Epichloë-infected wild grass populations where strains are characterized and alkaloids measured. Here, we describe for the first time the use of genotyping-by-sequencing (GBS) on a collection of 217 Epichloë-infected grasses (7 S. arundinaceum, 4 L. perenne, and 206 S. pratensis). This genotyping strategy is cheaper than complete genome sequencing, is suitable for a large number of individuals, and, when applied to endophyte-infected grasses, conveniently genotypes both organisms. In total, 6273 single nucleotide polymorphisms (SNPs) in the endophyte data set and 38 323 SNPs in the host data set were obtained. Our findings reveal a composite structure with three distinct endophyte clusters unrelated to the three main S. pratensis gene pools that have most likely spread from different glacial refugia in Eurasia. All three gene pools can establish symbiosis with E. uncinata. A comparison of the endophyte clusters with microsatellite-based fingerprinting of the same samples allows a quick test to discriminate between these clusters using two simple sequence repeats (SSRs). Concentrations of loline alkaloids and mycelial biomass are correlated and differ significantly among the plant and endophyte subpopulations; one endophyte strain has higher levels of lolines than others, and one specific host genotype is particularly suitable to host E. uncinata. These findings pave the way for targeted artificial inoculations of specific host-endophyte combinations to boost loline production in the symbiota and for genome association studies with the aim of isolating genes involved in the compatibility between meadow fescue and E. uncinata.
Collapse
Affiliation(s)
- G Cagnano
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge , Denmark
| | - I Lenk
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge , Denmark
| | - N Roulund
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge , Denmark
| | - C S Jensen
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge , Denmark
| | - M P Cox
- Statistics and Bioinformatics Group, School of Fundamental Sciences, Massey University , Palmerston North 4442, New Zealand
| | - T Asp
- Department of Molecular Biology and Genetics, Faculty of Science and Technology, Aarhus University , Aarhus, Denmark
| |
Collapse
|
7
|
Song QY, Li F, Nan ZB, Coulter JA, Wei WJ. Do Epichloë Endophytes and Their Grass Symbiosis Only Produce Toxic Alkaloids to Insects and Livestock? JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1169-1185. [PMID: 31922733 DOI: 10.1021/acs.jafc.9b06614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Epichloë endophytes in forage grasses have attracted widespread attention and interest of chemistry researchers as a result of the various unique chemical structures and interesting biological activities of their secondary metabolites. This review describes the diversity of unique chemical structures of taxa from Epichloë endophytes and grass infected with Epichloë endophytes and demonstrates their reported biological activities. Until now, nearly 160 secondary metabolites (alkaloids, peptides, indole derivatives, pyrimidines, sesquiterpenoids, flavonoids, phenol and phenolic acid derivatives, aliphatic metabolites, sterols, amines and amides, and others) have been reported from Epichloë endophytes and grass infected with Epichloë endophytes. Among these, non-alkaloids account for half of the population of total metabolites, indicating that they also play an important role in Epichloë endophytes and grass infected with Epichloë endophytes. Also, a diverse array of secondary metabolites isolated from Epichloë endophytes and symbionts is a rich source for developing new pesticides and drugs. Bioassays disclose that, in addition to toxic alkaloids, the other metabolites isolated from Epichloë endophytes and symbionts have notable biological activities, such as antifungal, anti-insect, and phytotoxic activities. Accordingly, the biological functions of non-alkaloids should not be neglected in the future investigation of Epichloë endophytes and symbionts.
Collapse
Affiliation(s)
- Qiu-Yan Song
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology , Lanzhou University , Lanzhou , Gansu 730020 , People's Republic of China
| | - Fan Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology , Lanzhou University , Lanzhou , Gansu 730020 , People's Republic of China
| | - Zhi-Biao Nan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology , Lanzhou University , Lanzhou , Gansu 730020 , People's Republic of China
| | - Jeffrey A Coulter
- Department of Agronomy and Plant Genetics , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Wen-Jun Wei
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , People's Republic of China
| |
Collapse
|
8
|
Infection Rates and Alkaloid Patterns of Different Grass Species with Systemic Epichloë Endophytes. Appl Environ Microbiol 2019; 85:AEM.00465-19. [PMID: 31227553 DOI: 10.1128/aem.00465-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/14/2019] [Indexed: 01/05/2023] Open
Abstract
Symbiotic Epichloë species are fungal endophytes of cool-season grasses that can produce alkaloids with toxicity to vertebrates and/or invertebrates. Monitoring infections and presence of alkaloids in grasses infected with Epichloë species can provide an estimate of possible intoxication risks for livestock. We sampled 3,046 individuals of 13 different grass species in three regions on 150 study sites in Germany. We determined infection rates and used PCR to identify Epichloë species diversity based on the presence of different alkaloid biosynthesis genes, then confirmed the possible chemotypes with high-performance liquid chromatography (HPLC)/ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and gas chromatography-mass spectrometry (GC-MS) measurements. Infections of Epichloë spp. were found in Festuca pratensis Huds. (81%), Festuca ovina L. aggregate (agg.) (73%), Lolium perenne L. (15%), Festuca rubra L. (15%) and Dactylis glomerata L. (8%). The other eight grass species did not appear to be infected. For the majority of Epichloë-infected L. perenne samples (98%), the alkaloids lolitrem B and peramine were present, but ergovaline was not detected, which was consistent with the genetic evaluation, as dmaW, the gene encoding the first step of the ergot alkaloid biosynthesis pathway, was absent. Epichloë uncinata in F. pratensis produced anti-insect loline compounds. The Epichloë spp. observed in the F. ovina agg. samples showed the greatest level of diversity, and different intermediates of the indole-diterpene pathway could be detected. Epichloë infection rates alone are insufficient to estimate intoxication risks for livestock, as other factors, like the ability of the endophyte to produce the alkaloids, also need to be assessed.IMPORTANCE Severe problems of livestock intoxication from Epichloë-infected forage grasses have been reported from New Zealand, Australia, and the United States, but much less frequently from Europe, and particularly not from Germany. Nevertheless, it is important to monitor infection rates and alkaloids of grasses with Epichloë fungi to estimate possible intoxication risks. Most studies focus on agricultural grass species like Lolium perenne and Festuca arundinacea, but other cool-season grass species can also be infected. We show that in Germany, infection rates and alkaloids differ between grass species and that some of the alkaloids can be toxic to livestock. Changes in grassland management due to changing climate, especially with a shift toward grasslands dominated with Epichloë-infected species such as Lolium perenne, may result in greater numbers of intoxicated livestock in the near future. We therefore suggest regular monitoring of grass species for infections and alkaloids and call for maintaining heterogenous grasslands for livestock.
Collapse
|
9
|
Yi M, Hendricks WQ, Kaste J, Charlton ND, Nagabhyru P, Panaccione DG, Young CA. Molecular identification and characterization of endophytes from uncultivated barley. Mycologia 2018; 110:453-472. [PMID: 29923795 DOI: 10.1080/00275514.2018.1464818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Epichloë species (Clavicipitaceae, Ascomycota) are endophytic symbionts of many cool-season grasses. Many interactions between Epichloë and their host grasses contribute to plant growth promotion, protection from many pathogens and insect pests, and tolerance to drought stress. Resistance to insect herbivores by endophytes associated with Hordeum species has been previously shown to vary depending on the endophyte-grass-insect combination. We explored the genetic and chemotypic diversity of endophytes present in wild Hordeum species. We analyzed seeds of Hordeum bogdanii, H. brevisubulatum, and H. comosum obtained from the US Department of Agriculture's (USDA) National Plant Germplasm System (NPGS), of which some have been reported as endophyte-infected. Using polymerase chain reaction (PCR) with primers specific to Epichloë species, we were able to identify endophytes in seeds from 17 of the 56 Plant Introduction (PI) lines, of which only 9 lines yielded viable seed. Phylogenetic analyses of housekeeping, alkaloid biosynthesis, and mating type genes suggest that the endophytes of the infected PI lines separate into five taxa: Epichloë bromicola, Epichloë tembladerae, and three unnamed interspecific hybrid species. One PI line contained an endophyte that is considered a new taxonomic group, Epichloë sp. HboTG-3 (H. bogdanii Taxonomic Group 3). Phylogenetic analyses of the interspecific hybrid endophytes from H. bogdanii and H. brevisubulatum indicate that these taxa all have an E. bromicola allele but the second allele varies. We verified in planta alkaloid production from the five genotypes yielding viable seed. Morphological characteristics of the isolates from the viable Hordeum species were analyzed for their features in culture and in planta. In the latter, we observed epiphyllous growth and in some cases sporulation on leaves of infected plants.
Collapse
Affiliation(s)
- Mihwa Yi
- a Noble Research Institute, LLC , Ardmore , Oklahoma 73401
| | | | - Joshua Kaste
- a Noble Research Institute, LLC , Ardmore , Oklahoma 73401
| | | | - Padmaja Nagabhyru
- b Department of Plant Pathology , University of Kentucky , Lexington , Kentucky 40546
| | - Daniel G Panaccione
- c Division of Plant and Soil Sciences , West Virginia University , Morgantown , West Virginia 26506
| | | |
Collapse
|