1
|
Yang W, Tang S, Xu R, Zhang L, Zhou Z, Yang Y, Li Y, Xiang H. LC-MS based metabolomics identification of natural metabolites against Fusarium oxysporum. FRONTIERS IN PLANT SCIENCE 2024; 15:1435963. [PMID: 39290733 PMCID: PMC11405212 DOI: 10.3389/fpls.2024.1435963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/06/2024] [Indexed: 09/19/2024]
Abstract
Fusarium is a soil-borne pathogen that poses a serious threat to the quality and yield of hundreds of crops worldwide, particularly tobacco production. Using metabolomics technology, we investigated natural metabolites from disease-conducting soil (DCS) and disease-suppressing soil (DSS) of tobacco rhizosphere as fungicides to control tobacco Fusarium wilt (TFW), which is mainly caused by Fusarium oxysporum. Furthermore, the antifungal mechanisms of these natural metabolites were preliminarily elucidated through various assessments, including antifungal activity determination, chemotaxis effect tests, PI staining experiments, and measurements of extracellular conductivity and protein content. Metabolomics results showed that the DCS with three different disease grades (G1, G5 and G9 groups) had significantly higher levels of 15, 14 and 233 differential rhizosphere metabolites (DRMs) and significantly lower levels of 72, 152 and 170 DRMs compared to the DSS (G0 group). According to KEGG pathway analysis, these DRMs were found to be enriched in the caffeine metabolism, biosynthesis of phenylpropanoids, galactose metabolism and tyrosine metabolism, etc. Linustatin, scopoletin and phenylpropiolic acid were picked out from these DRMs and found to have suppressive activity against F. oxysporum through correlation analysis and antifungal experiments. The three DRMs showed strong inhibitory effects on the growth and spore germination of F. oxysporum at concentrations of 0.5 mM or higher in each test period. Furthermore, F. oxysporum showed a phobotaxis effect against these three DRMs at concentrations as low as 0.25 mM. Finally, we found that the three DRMs had an inhibitory effect on F. oxysporum by destroying the integrity of the cell membrane and increasing the membrane permeability of F. oxysporum. This study firstly reports the inhibition activity of phenylpropiolic acid and linustatin on F. oxysporum, providing a practical and environmentally friendly method for biocontrol of TFW by using natural fungicides.
Collapse
Affiliation(s)
- Wenjuan Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Sidi Tang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Rubing Xu
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Lu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Zihao Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| | - Yanyan Li
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Haibo Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
2
|
Krone MJ, Dong Y, Mideros SX. Effect of Quantitative Wheat Resistance on the Aggressiveness of Fusarium graminearum. PHYTOPATHOLOGY 2024; 114:1577-1586. [PMID: 38669176 DOI: 10.1094/phyto-06-23-0206-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Little is known about the selection pressures acting on plant pathogen populations, especially those applied by quantitative forms of resistance. Fusarium graminearum causes Fusarium head blight in wheat, producing significant yield losses and mycotoxin contamination. Quantitative host resistance is the best method to control Fusarium head blight. However, there needs to be more understanding of how disease resistance affects the evolution of plant pathogens. The aim of this study was to determine if the presence or absence of wheat resistance influenced the fitness components and genomic regions of F. graminearum. Thirty-one isolates from highly susceptible and 25 isolates from moderately resistant wheat lines were used. Isolate aggressiveness was measured by the area under the disease progress curve, visually damaged kernels, and deoxynivalenol contamination. The in vitro growth rate and spore production were also measured. Two whole-genome scans for selection were conducted with 333,297 single-nucleotide polymorphisms. One scan looked for signatures of selection in the entire sample, and the other scan was for divergent selection between the isolates from moderately resistant wheat and highly susceptible wheat. The subsample of isolates from highly susceptible wheat was primarily aggressive. Several regions of the F. graminearum genome with signatures for selection were identified. The moderately resistant wheat varieties used in this study did not select more aggressive isolates, suggesting that quantitative resistance is a durable method to control Fusarium head blight.
Collapse
Affiliation(s)
- Mara J Krone
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL 61801
| | - Yanhong Dong
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108
| | - Santiago X Mideros
- Department of Crop Sciences, University of Illinois, Urbana-Champaign, IL 61801
| |
Collapse
|
3
|
Laraba I, Ward TJ, Cuperlovic-Culf M, Azimi H, Xi P, McCormick SP, Hay WT, Hao G, Vaughan MM. Insights into the Aggressiveness of the Emerging North American Population 3 (NA3) of Fusarium graminearum. PLANT DISEASE 2023; 107:2687-2700. [PMID: 36774561 DOI: 10.1094/pdis-11-22-2698-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the United States and Canada, Fusarium graminearum (Fg) is the predominant etiological agent of Fusarium head blight (FHB), an economically devastating fungal disease of wheat and other small grains. Besides yield losses, FHB leads to grain contamination with trichothecene mycotoxins that are harmful to plant, human, and livestock health. Three genetic North American populations of Fg, differing in their predominant trichothecene chemotype (i.e., NA1/15ADON, NA2/3ADON, and NA3/NX-2), have been identified. To improve our understanding of the newly discovered population NA3 and how population-level diversity influences FHB outcomes, we inoculated heads of the moderately resistant wheat cultivar Alsen with 15 representative strains from each population and evaluated disease progression, mycotoxin accumulation, and mycotoxin production per unit Fg biomass. Additionally, we evaluated population-specific differences in induced host defense responses. The NA3 population was significantly less aggressive than the NA1 and NA2 populations but posed a similar mycotoxigenic potential. Multiomics analyses revealed patterns in mycotoxin production per unit Fg biomass, expression of Fg aggressiveness-associated genes, and host defense responses that did not always correlate with the NA3-specific severity difference. Our comparative disease assay of NA3/NX-2 and admixed NA1/NX-2 strains indicated that the reduced NA3 aggressiveness is not due solely to the NX-2 chemotype. Notably, the NA1 and NA2 populations did not show a significant advantage over NA3 in perithecia production, a fitness-related trait. Together, our data highlight that the disease outcomes were not due to mycotoxin production or host defense alone, indicating that other virulence factors and/or host defense mechanisms are likely involved.
Collapse
Affiliation(s)
- Imane Laraba
- Oak Ridge Institute for Science and Education fellow, Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Todd J Ward
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | | | - Hilda Azimi
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, K1A 0R6, Canada
| | - Pengcheng Xi
- Digital Technologies Research Centre, National Research Council Canada, Ottawa, K1A 0R6, Canada
| | - Susan P McCormick
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - William T Hay
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Guixia Hao
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| | - Martha M Vaughan
- Mycotoxin Prevention and Applied Microbiology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL 61604, U.S.A
| |
Collapse
|
4
|
Le Naour—Vernet M, Charriat F, Gracy J, Cros-Arteil S, Ravel S, Veillet F, Meusnier I, Padilla A, Kroj T, Cesari S, Gladieux P. Adaptive evolution in virulence effectors of the rice blast fungus Pyricularia oryzae. PLoS Pathog 2023; 19:e1011294. [PMID: 37695773 PMCID: PMC10513199 DOI: 10.1371/journal.ppat.1011294] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/21/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023] Open
Abstract
Plant pathogens secrete proteins called effectors that target host cellular processes to promote disease. Recently, structural genomics has identified several families of fungal effectors that share a similar three-dimensional structure despite remarkably variable amino-acid sequences and surface properties. To explore the selective forces that underlie the sequence variability of structurally-analogous effectors, we focused on MAX effectors, a structural family of effectors that are major determinants of virulence in the rice blast fungus Pyricularia oryzae. Using structure-informed gene annotation, we identified 58 to 78 MAX effector genes per genome in a set of 120 isolates representing seven host-associated lineages. The expression of MAX effector genes was primarily restricted to the early biotrophic phase of infection and strongly influenced by the host plant. Pangenome analyses of MAX effectors demonstrated extensive presence/absence polymorphism and identified gene loss events possibly involved in host range adaptation. However, gene knock-in experiments did not reveal a strong effect on virulence phenotypes suggesting that other evolutionary mechanisms are the main drivers of MAX effector losses. MAX effectors displayed high levels of standing variation and high rates of non-synonymous substitutions, pointing to widespread positive selection shaping the molecular diversity of MAX effectors. The combination of these analyses with structural data revealed that positive selection acts mostly on residues located in particular structural elements and at specific positions. By providing a comprehensive catalog of amino acid polymorphism, and by identifying the structural determinants of the sequence diversity, our work will inform future studies aimed at elucidating the function and mode of action of MAX effectors.
Collapse
Affiliation(s)
- Marie Le Naour—Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Florian Charriat
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jérôme Gracy
- Centre de Biologie Structurale (CBS), Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Sandrine Cros-Arteil
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Sébastien Ravel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Florian Veillet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Isabelle Meusnier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - André Padilla
- Centre de Biologie Structurale (CBS), Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
5
|
Adhikari P, Mideros SX, Jamann TM. Differential Regulation of Maize and Sorghum Orthologs in Response to the Fungal Pathogen Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2021; 12:675208. [PMID: 34113371 PMCID: PMC8185347 DOI: 10.3389/fpls.2021.675208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. Exserohilum turcicum infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific E. turcicum isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. E. turcicum responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.
Collapse
|
6
|
Adhikari P, Goodrich E, Fernandes SB, Lipka AE, Tranel P, Brown P, Jamann TM. Genetic variation associated with PPO-inhibiting herbicide tolerance in sorghum. PLoS One 2020; 15:e0233254. [PMID: 33052910 PMCID: PMC7556536 DOI: 10.1371/journal.pone.0233254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/26/2020] [Indexed: 11/29/2022] Open
Abstract
Herbicide application is crucial for weed management in most crop production systems, but for sorghum herbicide options are limited. Sorghum is sensitive to residual protoporphyrinogen oxidase (PPO)-inhibiting herbicides, such as fomesafen, and a long re-entry period is required before sorghum can be planted after its application. Improving sorghum for tolerance to such residual herbicides would allow for increased sorghum production and the expansion of herbicide options for growers. In this study, we observed sorghum tolerance to residual fomesafen. To investigate the underlying tolerance mechanism a genome-wide association mapping study was conducted using field-collected sorghum biomass panel (SBP) data, and a greenhouse assay was developed to confirm the field phenotypes. A total of 26 significant SNPs (FDR<0.05), spanning a 215.3 kb region on chromosome 3, were detected. The ten most significant SNPs included two in genic regions (Sobic.003G136800, and Sobic.003G136900) and eight SNPs in the intergenic region encompassing the genes Sobic.003G136700, Sobic.003G136800, Sobic.003G137000, Sobic.003G136900, and Sobic.003G137100. The gene Sobic.003G137100 (PPXI), which encodes the PPO1 enzyme, one of the targets of PPO-inhibiting herbicides, was located 12kb downstream of the significant SNP S03_13152838. We found that PPXI is highly conserved in sorghum and expression does not significantly differ between tolerant and sensitive sorghum lines. Our results suggest that PPXI most likely does not underlie the observed herbicide tolerance. Instead, the mechanism underlying herbicide tolerance in the SBP is likely metabolism-based resistance, possibly regulated by the action of multiple genes. Further research is necessary to confirm candidate genes and their functions.
Collapse
Affiliation(s)
- Pragya Adhikari
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Emma Goodrich
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Samuel B. Fernandes
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Alexander E. Lipka
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Patrick Tranel
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Patrick Brown
- Department of Plant Sciences, University of California Davis, Davis, CA, United States of America
| | - Tiffany M. Jamann
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
- * E-mail:
| |
Collapse
|
7
|
Pathogenicity and Virulence Factors of Fusarium graminearum Including Factors Discovered Using Next Generation Sequencing Technologies and Proteomics. Microorganisms 2020; 8:microorganisms8020305. [PMID: 32098375 PMCID: PMC7075021 DOI: 10.3390/microorganisms8020305] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 01/19/2023] Open
Abstract
Fusarium graminearum is a devasting mycotoxin-producing pathogen of grain crops. F. graminearum has been extensively studied to understand its pathogenicity and virulence factors. These studies gained momentum with the advent of next-generation sequencing (NGS) technologies and proteomics. NGS and proteomics have enabled the discovery of a multitude of pathogenicity and virulence factors of F. graminearum. This current review aimed to trace progress made in discovering F. graminearum pathogenicity and virulence factors in general, as well as pathogenicity and virulence factors discovered using NGS, and to some extent, using proteomics. We present more than 100 discovered pathogenicity or virulence factors and conclude that although a multitude of pathogenicity and virulence factors have already been discovered, more work needs to be done to take advantage of NGS and its companion applications of proteomics.
Collapse
|