1
|
Gómez-Espinoza J, Riquelme C, Romero-Villegas E, Ahumada-Rudolph R, Novoa V, Méndez P, Millar C, Fernández-Alarcón N, Garnica S, Rajchenberg M, Cabrera-Pardo JR. Diversity of Agaricomycetes in southern South America and their bioactive natural products. Nat Prod Res 2024; 38:3389-3403. [PMID: 37661754 DOI: 10.1080/14786419.2023.2244126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/03/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
Fungi have a unique metabolic plasticity allowing them to produce a wide range of natural products. Since the discovery of penicillin, an antibiotic of fungal origin, substantial efforts have been devoted globally to search for fungal-derived natural bioactive products. Andean region forests represent one of the few undisturbed ecosystems in the world with little human intervention. While these forests display a rich biological diversity, mycological and chemical studies in these environments have been scarce. This review aims to summarise all the efforts regarding the chemical or bioactivity analyses of Agaricomycetes (Basidiomycota) from southern South America environments. Overall, herein we report a total of 147 fungal species, 21 of them showing chemical characterisation and/or biological activity. In terms of chemical cores, furans, chlorinated phenol derivatives, polyenes, lactones, terpenes and himanimides have been reported. These natural products displayed a range of biological activities including antioxidant, antimicrobial, antifungal, neuroprotective and osteoclast-forming suppressing effects.
Collapse
Affiliation(s)
- Jonhatan Gómez-Espinoza
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Cristian Riquelme
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Laboratorio de Micología, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Enzo Romero-Villegas
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Ramón Ahumada-Rudolph
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Vanessa Novoa
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
| | - Paola Méndez
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Camila Millar
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Naomi Fernández-Alarcón
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| | - Sigisfredo Garnica
- Laboratorio de Micología, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Mario Rajchenberg
- Centro de Investigación y Extensión Forestal Andino Patagónico (CIEFAP), Chubut, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, (CONICET), Buenos Aires, Argentina
| | - Jaime R Cabrera-Pardo
- Laboratorio de Química Aplicada y Sustentable (LabQAS), Departamento de Química, Universidad del Bío-Bío, Concepción, Chile
| |
Collapse
|
3
|
Caiafa MV, Jusino MA, Wilkie AC, Díaz IA, Sieving KE, Smith ME. Discovering the role of Patagonian birds in the dispersal of truffles and other mycorrhizal fungi. Curr Biol 2021; 31:5558-5570.e3. [PMID: 34715015 DOI: 10.1016/j.cub.2021.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/01/2021] [Accepted: 10/11/2021] [Indexed: 01/16/2023]
Abstract
Dispersal is a key process that impacts population dynamics and structures biotic communities. Dispersal limitation influences the assembly of plant and microbial communities, including mycorrhizal fungi and their plant hosts. Mycorrhizal fungi play key ecological roles in forests by feeding nutrients to plants in exchange for sugars, so the dispersal of mycorrhizal fungi spores actively shapes plant communities. Although many fungi rely on wind for spore dispersal, some fungi have lost the ability to shoot their spores into the air and instead produce enclosed belowground fruiting bodies (truffles) that rely on animals for dispersal. The role of mammals in fungal spore dispersal is well documented, but the relevance of birds as dispersal agents of fungi has been understudied, despite the prominence of birds as seed dispersal vectors. Here, we use metagenomics and epifluorescence microscopy to demonstrate that two common, widespread, and endemic Patagonian birds, chucao tapaculos (Scelorchilus rubecula) and black-throated huet-huets (Pteroptochos tarnii), regularly consume mycorrhizal fungi and disperse viable spores via mycophagy. Our metagenomic analysis indicates that these birds routinely consume diverse mycorrhizal fungi, including many truffles, that are symbiotically associated with Nothofagaceae trees that dominate Patagonian forests. Epifluorescence microscopy of fecal samples confirmed that the birds dispersed copious viable spores from truffles and other mycorrhizal fungi. We show that fungi are a common food for both bird species and that this animal-fungi symbiosis is widespread and ecologically important in Patagonia. Our findings indicate that birds may also act as cryptic but critical fungal dispersal agents in other ecosystems.
Collapse
Affiliation(s)
- Marcos V Caiafa
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; Department of Microbiology and Plant Pathology, University of California Riverside, Riverside, CA 92521, USA.
| | - Michelle A Jusino
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA; Center for Forest Mycology Research, USDA Forest Service, Northern Research Station, Madison, WI 53726, USA
| | - Ann C Wilkie
- Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Iván A Díaz
- Instituto de Conservación, Biodiversidad y Territorio, Universidad Austral de Chile, Valdivia, Chile
| | - Kathryn E Sieving
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32611, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Li SN, Xu F, Jiang M, Liu F, Wu F, Zhang P, Fan YG, Chen ZH. Two new toxic yellow Inocybe species from China: morphological characteristics, phylogenetic analyses and toxin detection. MycoKeys 2021; 81:185-204. [PMID: 34385885 PMCID: PMC8355026 DOI: 10.3897/mycokeys.81.68485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/30/2021] [Indexed: 11/12/2022] Open
Abstract
Some species of Inocybe s. str. caused neurotoxic poisoning after consumption around the world. However, there are a large number of species in this genus that have not been studied for their toxicity or toxin content. In this study, we report two new toxic yellow Inocybe s. str. species from China based on morphological characteristics, phylogenetic analyses and toxin detection. Among the two species, Inocybesquarrosolutea is reported as a newly recorded species of China. We also describe a new species, I.squarrosofulva, which is morphologically similar to I.squarrosolutea. The new species is characterized by its ochraceous squarrose pileus, distinctly annulate cortina on the stipe, nodulose basidiospores and thick-walled pleurocystidia. Muscarine in the fruitbodies was detected by UPLC-MS/MS, the content in I.squarrosolutea and I.squarrosofulva were 136.4 ± 25.4 to 1683.0 ± 313 mg/kg dry weight and 31.2 ± 5.8 to 101.8 ± 18.9 mg/kg dry weight, respectively.
Collapse
Affiliation(s)
- Sai Nan Li
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, ChinaHunan Normal UniversityChangshaChina
| | - Fei Xu
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, ChinaHunan Normal UniversityChangshaChina
| | - Ming Jiang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, ChinaHunan Normal UniversityChangshaChina
| | - Feng Liu
- Ningxia Center for Disease Control and Prevention, Yinchuan, Ningxia 750004, ChinaNingxia Center for Disease Control and PreventionYinchuanChina
| | - Fang Wu
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, ChinaHunan Normal UniversityChangshaChina
- Hunan Edible Fungal Research Institute, Changsha, Hunan 410013, ChinaCollege of Life Science, Hunan Normal UniversityChangshaChina
| | - Ping Zhang
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, ChinaHunan Normal UniversityChangshaChina
| | - Yu Guang Fan
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, ChinaHainan Medical UniversityHaikouChina
| | - Zuo Hong Chen
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410006, ChinaHunan Normal UniversityChangshaChina
| |
Collapse
|