1
|
Zhu C, Sun J, Tian F, Tian X, Liu Q, Pan Y, Zhang Y, Luo Z. The Bbotf1 Zn(Ⅱ) 2Cys 6 transcription factor contributes to antioxidant response, fatty acid assimilation, peroxisome proliferation and infection cycles in insect pathogenic fungus Beauveria bassiana. J Invertebr Pathol 2024; 204:108083. [PMID: 38458350 DOI: 10.1016/j.jip.2024.108083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/30/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The abilities to withstand oxidation and assimilate fatty acids are critical for successful infection by many pathogenic fungi. Here, we characterized a Zn(II)2Cys6 transcription factor Bbotf1 in the insect pathogenic fungus Beauveria bassiana, which links oxidative response and fatty acid assimilation via regulating peroxisome proliferation. The null mutant ΔBbotf1 showed impaired resistance to oxidants, accompanied by decreased activities of antioxidant enzymes including CATs, PODs and SODs, and down-regulated expression of many antioxidation-associated genes under oxidative stress condition. Meanwhile, Bbotf1 acts as an activator to regulate fatty acid assimilation, lipid and iron homeostasis as well as peroxisome proliferation and localization, and the expressions of some critical genes related to glyoxylate cycle and peroxins were down-regulated in ΔBbotf1 in presence of oleic acid. In addition, ΔBbotf1 was more sensitive to osmotic stressors, CFW, SDS and LDS. Insect bioassays revealed that insignificant changes in virulence were seen between the null mutant and parent strain when conidia produced on CZP plates were used for topical application. However, propagules recovered from cadavers killed by ΔBbotf1 exhibited impaired virulence as compared with counterparts of the parent strain. These data offer a novel insight into fine-tuned aspects of Bbotf1 concerning multi-stress responses, lipid catabolism and infection cycles.
Collapse
Affiliation(s)
- Chenhua Zhu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Jingxin Sun
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Fangfang Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Xinting Tian
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qi Liu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yunxia Pan
- College of Engineering and Technology, Southwest University, Chongqing 400715, China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China; Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
2
|
Fofana F, Descombes C, Kouamé AP, Lefort F. Isolation, Identification and Evaluation of the Effects of Native Entomopathogenic Fungi from Côte d'Ivoire on Galleria mellonella. Microorganisms 2023; 11:2104. [PMID: 37630664 PMCID: PMC10458300 DOI: 10.3390/microorganisms11082104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
The fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), is a polyphagous pest highly damaging to maize and other food crops in Africa, particularly in Côte d'Ivoire. Chemical pesticides not only have often proved to be unsuccessful, but cause adverse effects on the environment and human health; therefore, entomopathogenic fungi could represent an alternative biocontrol solution. Against this background, fungi were isolated from soil samples collected in maize fields in three regions of Côte d'Ivoire, by the methods of soil dilution and baiting with Galleria mellonella. The resulting 86 fungal isolates were phenotypically and genetically identified. The pathogenicity of seven isolates of Metarhizium spp., three isolates of Beauveria bassiana and two isolates of Trichoderma sp. was evaluated on fifth instar larvae (L5) of G. mellonella. Larval mortality rates and the median lethal time (LT50) were determined seven days after inoculation for each of these selected isolates. The median lethal concentration (LC50) was determined for a selection of isolates. Beauveria bassiana isolate A214b was the most effective, causing 100% mortality, with an LT50 of 2.64 days and an LC50 of 1.12 × 104 conidia mL-1. Two other promising isolates, A211 and A214a, belonging to B. bassiana, caused 100% mortality with LT50 values of 3.44 and 4.04 days, respectively. Mortality caused by Metarhizium isolates varied from 65.38% to 100%, with Metarhizium anisopliae isolate T331 causing 100% mortality with an LT50 of 3.08 days at an LC50 of 3.33 × 104 conidia mL-1. Trichoderma sp. isolates were the least pathogenic ones. Beauveria bassiana and Metarhizium isolates showed to be virulent against the model Lepidopteran G. mellonella and will be tested on S. frugiperda.
Collapse
Affiliation(s)
- Fatoumatou Fofana
- Plants and Pathogens Group, Research Institute Land Nature Environment, Geneva School of Engineering Architecture and Landscape, HES-SO University of Applied Sciences and Arts Western Switzerland, 150 Route de Presinge, 1254 Jussy, Switzerland (C.D.)
- Faculty of Natural Sciences, University Nangui Abrogoua, 02 B.P. 801 Abidjan 02, Côte d’Ivoire;
| | - Corentin Descombes
- Plants and Pathogens Group, Research Institute Land Nature Environment, Geneva School of Engineering Architecture and Landscape, HES-SO University of Applied Sciences and Arts Western Switzerland, 150 Route de Presinge, 1254 Jussy, Switzerland (C.D.)
| | - Assiri Patrice Kouamé
- Faculty of Natural Sciences, University Nangui Abrogoua, 02 B.P. 801 Abidjan 02, Côte d’Ivoire;
| | - François Lefort
- Plants and Pathogens Group, Research Institute Land Nature Environment, Geneva School of Engineering Architecture and Landscape, HES-SO University of Applied Sciences and Arts Western Switzerland, 150 Route de Presinge, 1254 Jussy, Switzerland (C.D.)
| |
Collapse
|
3
|
Ganina MD, Tyurin MV, Zhumatayeva UT, Lednev GR, Morozov SV, Kryukov VY. Comparative Analysis of Epicuticular Lipids in Locusta migratoria and Calliptamus italicus: A Possible Role in Susceptibility to Entomopathogenic Fungi. INSECTS 2022; 13:736. [PMID: 36005361 PMCID: PMC9409248 DOI: 10.3390/insects13080736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/09/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Cuticular lipids protect insects from desiccation and may determine resistance to fungal pathogens. Nonetheless, the trade-off between these lipid functions is still poorly understood. The migratory locust Locusta migratoria and the Italian locust Calliptamus italicus have dissimilar hygrothermal preferences: L. migratoria inhabits areas near water bodies with a reed bed, and C. italicus exploits a wide range of habitats and prefers steppes and semideserts with the predominance of sagebrushes. This paper presents significant differences between these species' nymphs in epicuticular lipid composition (according to gas chromatography with mass spectrometry) and in susceptibility to Metarhizium robertsii and Beauveria bassiana. The main differences in lipid composition are shifts to longer chain and branched hydrocarbons (di- and trimethylalkanes) in C. italicus compared to L. migratoria. C. italicus also has a slightly higher n-alkane content. Fatty acids showed low concentrations in the extracts, and L. migratoria has a wider range of fatty acids than C. italicus does. Susceptibility to M. robertsii and the number of conidia adhering to the cuticle proved to be significantly higher in C. italicus, although conidia germination percentages on epicuticular extracts did not differ between the species. We propose that the hydrocarbon composition of C. italicus may be an adaptation to a wide range of habitats including arid ones but may make the C. italicus cuticle more hospitable for fungi.
Collapse
Affiliation(s)
- Mariya D. Ganina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Academician Lavrentyev Ave. 9, 630090 Novosibirsk, Russia
| | - Maksim V. Tyurin
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze Str. 11, 630091 Novosibirsk, Russia
| | - Ulzhalgas T. Zhumatayeva
- Department of Plant Protection and Quarantine, Faculty of Agrabiology, Kazakh National Agrarian Research University, Abai Avenue 8, Almaty 050010, Kazakhstan
| | - Georgy R. Lednev
- All-Russian Institute of Plant Protection, Podbelskogo Avenue 3, St. Petersburg, 196608 Pushkin, Russia
| | - Sergey V. Morozov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, Academician Lavrentyev Ave. 9, 630090 Novosibirsk, Russia
| | - Vadim Yu. Kryukov
- Institute of Systematics and Ecology of Animals, Siberian Branch of Russian Academy of Sciences, Frunze Str. 11, 630091 Novosibirsk, Russia
| |
Collapse
|
4
|
Aguilera-Sammaritano J, Caballero J, Deymié M, Rosa M, Vazquez F, Pappano D, Lechner B, González-Teuber M. Dual effects of entomopathogenic fungi on control of the pest Lobesia botrana and the pathogenic fungus Eutypella microtheca on grapevine. Biol Res 2021; 54:44. [PMID: 34952648 PMCID: PMC8709985 DOI: 10.1186/s40659-021-00367-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 12/13/2021] [Indexed: 11/24/2022] Open
Abstract
Background Entomopathogenic fungi (EPF) are the natural enemies of insect pests. Nevertheless, research on the use of EPF for simultaneous prevention of pest and disease agents on the same crop is limited. In this study, we explored the potential dual effects of three strains of the EPF Metarhizium anisopliae on the control of detrimental agents of Vitis vinifera L., including different developmental stages (larvae, pupae, and adult) of the insect pest Lobesia botrana and the phytopathogenic fungus Eutypella microtheca. Methods Laboratory pathogenicity trials were performed to examine the effects of the three M. anisopliae strains on the mortality rate of L. botrana. In addition, field trials were conducted to assess the biocontrol potential of one selected M. anisopliae strain on the larval stage of L. botrana. Moreover, inhibitory effects of the three EPF strains on E. microtheca growth were examined in vitro. Results All the M. anisopliae strains were highly effective, killing all stages of L. botrana as well as inhibiting the growth of E. microtheca. The in vitro mortality of larvae treated with the strains was over 75%, whereas that of treated pupae and adults was over 85%. The three EPF strains showed similar efficacy against larvae and adult stages; nevertheless, pupal mortality was observed to be strain dependent. Mortality of L. botrana larvae ranged from 64 to 91% at field conditions. Inhibition of E. microtheca growth reached 50% in comparison to the control. Conclusions Our study showed that M. anisopliae strains were highly effective in ensuring control of two different detrimental agents of V. vinifera L., providing new evidence to support the dual effects of entomopathogenic fungi.
Collapse
Affiliation(s)
- Juan Aguilera-Sammaritano
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile.
| | - Juan Caballero
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, Argentina
| | - María Deymié
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, Argentina
| | - Melisa Rosa
- Instituto de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, Argentina
| | - Fabio Vazquez
- Instituto de Biotecnología, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, Argentina
| | - Delia Pappano
- Instituto de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de San Juan, San Juan, Argentina
| | - Bernardo Lechner
- Instituto de Micología y Botánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcia González-Teuber
- Departamento de Química Ambiental, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| |
Collapse
|
5
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|