1
|
Helmstetter N, Harrison K, Gregory J, Harrison J, Ballou E, Farrer RA. A near-complete telomere-to-telomere genome assembly for Batrachochytrium dendrobatidis GPL JEL423 reveals a larger CBM18 gene family and a smaller M36 metalloprotease gene family than previously recognized. G3 (BETHESDA, MD.) 2025; 15:jkae304. [PMID: 39709617 PMCID: PMC11797018 DOI: 10.1093/g3journal/jkae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/10/2024] [Accepted: 12/13/2024] [Indexed: 12/24/2024]
Abstract
Batrachochytrium dendrobatidis is responsible for mass extinctions and extirpations of amphibians, mainly driven by the Global Panzootic Lineage (BdGPL). BdGPL isolate JEL423 is a commonly used reference strain in studies exploring the evolution, epidemiology, and pathogenicity of chytrid pathogens. These studies have been hampered by the fragmented, erroneous, and incomplete B. dendrobatidis JEL423 genome assembly, which includes long stretches of ambiguous positions and poorly resolved telomeric regions. Here, we present and describe a substantially improved, near telomere-to-telomere genome assembly and gene annotation for B. dendrobatidis JEL423. Our new assembly is 24.5 Mb in length, ∼800 kb longer than the previously published assembly for this organism, comprising 18 nuclear scaffolds and 2 mitochondrial scaffolds and including an extra 839 kb of repetitive sequence. We discovered that the patterns of aneuploidy in B. dendrobatidis JEL423 have remained stable over approximately 5 years. We found that our updated assembly encodes fewer than half the number of M36 metalloprotease genes predicted in the previous assembly. In contrast, members of the crinkling and necrosis gene family were found in similar numbers to the previous assembly. We also identified a more extensive carbohydrate binding module 18 gene family than previously observed. We anticipate our findings, and the updated genome assembly will be a useful tool for further investigation of the genome evolution of the pathogenic chytrids.
Collapse
Affiliation(s)
- Nicolas Helmstetter
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | | | - Jack Gregory
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Jamie Harrison
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Elizabeth Ballou
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Rhys A Farrer
- MRC Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
2
|
Nguyen TTT, Jeon SJ, Song DY, Kim DH, Lee HB. Exploring Diversity within Chytridiales and Rhizophydiales ( Chytridiomycota) in Korea. MYCOBIOLOGY 2025; 53:27-35. [PMID: 39895931 PMCID: PMC11780703 DOI: 10.1080/12298093.2024.2436204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 02/04/2025]
Abstract
Chytridiomycota is the most species-rich phylum of basal lineage fungi with a worldwide distribution. Its species constitute essential components of freshwater ecosystems. However, the diversity of this group in Korea remains understudied. A survey of Chytridiales and Rhizophydiales fungi was conducted in soil and freshwater environments in Korea, and seven strains were isolated. Based on morphological and molecular data, a previously unidentified, novel Rhizophydium species was discovered, designated Rhizophydium multiplex sp. nov. In addition, Chytriomyces hyalinus and Globomyces pollinis-pini were isolated for the first time in Korea. Detailed descriptions and illustrations of the three species are provided. This study highlights the potential diversity of chytrid fungi in Korea.
Collapse
Affiliation(s)
- Thuong T. T. Nguyen
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Sun Jeong Jeon
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Do Young Song
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Dong Hee Kim
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| | - Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
3
|
Thomé PC, Wolinska J, Van Den Wyngaert S, Reñé A, Ilicic D, Agha R, Grossart HP, Garcés E, Monaghan MT, Strassert JFH. Phylogenomics including new sequence data of phytoplankton-infecting chytrids reveals multiple independent lifestyle transitions across the phylum. Mol Phylogenet Evol 2024; 197:108103. [PMID: 38754710 DOI: 10.1016/j.ympev.2024.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/01/2023] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Parasitism is the most common lifestyle on Earth and has emerged many times independently across the eukaryotic tree of life. It is frequently found among chytrids (Chytridiomycota), which are early-branching unicellular fungi that feed osmotrophically via rhizoids as saprotrophs or parasites. Chytrids are abundant in most aquatic and terrestrial environments and fulfil important ecosystem functions. As parasites, they can have significant impacts on host populations. They cause global amphibian declines and influence the Earth's carbon cycle by terminating algal blooms. To date, the evolution of parasitism within the chytrid phylum remains unclear due to the low phylogenetic resolution of rRNA genes for the early diversification of fungi, and because few parasitic lineages have been cultured and genomic data for parasites is scarce. Here, we combine transcriptomics, culture-independent single-cell genomics and a phylogenomic approach to overcome these limitations. We newly sequenced 29 parasitic taxa and combined these with existing data to provide a robust backbone topology for the diversification of Chytridiomycota. Our analyses reveal multiple independent lifestyle transitions between parasitism and saprotrophy among chytrids and multiple host shifts by parasites. Based on these results and the parasitic lifestyle of other early-branching holomycotan lineages, we hypothesise that the chytrid last common ancestor was a parasite of phytoplankton.
Collapse
Affiliation(s)
- Pauline C Thomé
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Justyna Wolinska
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Silke Van Den Wyngaert
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Department of Biology, University of Turku, Turku, Finland
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Doris Ilicic
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Ramsy Agha
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Hans-Peter Grossart
- Department of Plankton and Microbial Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany; Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar, Barcelona, Spain
| | - Michael T Monaghan
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Institut für Biologie, Freie Universität Berlin, Berlin, Germany
| | - Jürgen F H Strassert
- Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.
| |
Collapse
|
4
|
Hurdeal VG, Longcore JE, Jones EBG, Hyde KD, Gentekaki E. Diversity of Rhizophydiales (Chytridiomycota) in Thailand: unveiling the hidden gems of the Kingdom. IMA Fungus 2024; 15:17. [PMID: 38937805 PMCID: PMC11210171 DOI: 10.1186/s43008-024-00144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/28/2024] [Indexed: 06/29/2024] Open
Abstract
Chytrids, often overshadowed by their other fungal counterparts, take center stage as we unravel the mysteries surrounding new species within Rhizophydiales and explore their unique characteristics. In the broader spectrum of chytrids, their significance lies not only in their roles as decomposers but also as key players in nutrient cycling within aquatic ecosystems as parasites and saprobes. Baited soil and aquatic samples collected from various provinces of Thailand, yielded new species of the Rhizophydiales (Chytridiomycota), some of which expanded previously single species genera. Our investigation incorporated a combination of morphological and phylogenetic approaches, enabling us to identify these isolates as distinct taxa. The novel isolates possess distinguishing features, such as variations in size and shape of the sporangium and zoospores, that somewhat differentiate them from described taxa. To confirm the novelty of the species, we employed robust phylogenetic analyses using maximum likelihood and bayesian methods. The results provided strong support for the presence of eight distinct lineages within the Rhizophydiales, representing our newly discovered species. Furthermore, we employed Poisson Tree Processes to infer putative species boundaries and supplement evidence for the establishment of our new Rhizophydiales species. By meticulously exploring their morphological characteristics and genetic makeup, we expand the known catalogue of fungal diversity by describing Alphamyces thailandicus, Angulomyces ubonensis, Gorgonomyces aquaticus, G. chiangraiensis, G. limnicus, Pateramyces pingflumenensis, Terramyces aquatica, and T. flumenensis and also provide valuable insights into the intricacies of this order. This newfound knowledge not only enriches our understanding of Rhizophydiales but also contributes significantly to the broader field of mycology, addressing a critical gap in the documentation of fungal species. The identification and characterization of these eight novel species mark a noteworthy stride towards a more comprehensive comprehension of fungal ecosystems and their vital role.
Collapse
Affiliation(s)
- Vedprakash G Hurdeal
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, ME, 04469-5722, USA
| | - E B Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kevin D Hyde
- School of Science, Mae Fah Luang University, Chiang Rai, 57100, Thailand
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand
| | - Eleni Gentekaki
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100, Thailand.
- Department of Veterinary Medicine, University of Nicosia School of Veterinary Medicine, Nicosia, 2414, Cyprus.
| |
Collapse
|
5
|
Seto K, Simmons DR, Quandt CA, Frenken T, Dirks AC, Clemons RA, McKindles KM, McKay RML, James TY. A combined microscopy and single-cell sequencing approach reveals the ecology, morphology, and phylogeny of uncultured lineages of zoosporic fungi. mBio 2023; 14:e0131323. [PMID: 37486265 PMCID: PMC10470594 DOI: 10.1128/mbio.01313-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Environmental DNA analyses of fungal communities typically reveal a much larger diversity than can be ascribed to known species. Much of this hidden diversity lies within undescribed fungal lineages, especially the early diverging fungi (EDF). Although these EDF often represent new lineages even at the phylum level, they have never been cultured, making their morphology and ecology uncertain. One of the methods to characterize these uncultured fungi is a single-cell DNA sequencing approach. In this study, we established a large data set of single-cell sequences of EDF by manually isolating and photographing parasitic fungi on various hosts such as algae, protists, and micro-invertebrates, combined with subsequent long-read sequencing of the ribosomal DNA locus (rDNA). We successfully obtained rDNA sequences of 127 parasitic fungal cells, which clustered into 71 phylogenetic lineages belonging to seven phylum-level clades of EDF: Blastocladiomycota, Chytridiomycota, Aphelidiomycota, Rozellomycota, and three unknown phylum-level clades. Most of our single cells yielded novel sequences distinguished from both described taxa and existing metabarcoding data, indicating an expansive and hidden diversity of parasitic taxa of EDF. We also revealed an unexpected diversity of endobiotic Olpidium-like chytrids and hyper-parasitic lineages. Overall, by combining photographs of parasitic fungi with phylogenetic analyses, we were able to better understand the ecological function and morphology of many of the branches on the fungal tree of life known only from DNA sequences. IMPORTANCE Much of the diversity of microbes from natural habitats, such as soil and freshwater, comprise species and lineages that have never been isolated into pure culture. In part, this stems from a bias of culturing in favor of saprotrophic microbes over the myriad symbiotic ones that include parasitic and mutualistic relationships with other taxa. In the present study, we aimed to shed light on the ecological function and morphology of the many undescribed lineages of aquatic fungi by individually isolating and sequencing molecular barcodes from 127 cells of host-associated fungi using single-cell sequencing. By adding these sequences and their photographs into the fungal tree, we were able to understand the morphology of reproductive and vegetative structures of these novel fungi and to provide a hypothesized ecological function for them. These individual host-fungal cells revealed themselves to be complex environments despite their small size; numerous samples were hyper-parasitized with other zoosporic fungal lineages such as Rozellomycota.
Collapse
Affiliation(s)
- Kensuke Seto
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Faculty of Environment and Information Sciences, Yokohama National University, Yokohama, Kanagawa, Japan
| | - D. Rabern Simmons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA
| | - C. Alisha Quandt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, Colorado, USA
| | - Thijs Frenken
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Cluster Nature and Society, HAS University of Applied Sciences, 's-Hertogenbosch, the Netherlands
| | - Alden C. Dirks
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca A. Clemons
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Katelyn M. McKindles
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
| | - R. Michael L. McKay
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, Ontario, Canada
- Great Lakes Center for Fresh Waters and Human Health, Bowling Green State University, Bowling Green, Ohio, USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Hurdeal VG, Longcore JE, Gareth Jones EB, Rabern Simmons D, Hyde KD, Gentekaki E. Integrative approach to species delimitation in Rhizophydiales: Novel species of Angulomyces, Gorgonomyces, and Terramyces from northern Thailand. Mol Phylogenet Evol 2023; 180:107706. [PMID: 36657624 DOI: 10.1016/j.ympev.2023.107706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 12/23/2022] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
The Chytridiomycota is a phylum of zoosporic eufungi that inhabit terrestrial, freshwater, and oceanic habitats. Within the phylum, the Rhizophydiales contains several monotypic families theorized to hold a diverse assemblage of fungi yet to be discovered and properly described. Based on morphology alone, many species in this order are difficult or impossible to identify. In this study, we isolated three chytrids from northern Thailand. Phylogenetic analyses placed the isolates in three monotypic genera within Rhizophydiales. Intrageneric genetic distances in the internal transcribed spacer (ITS) ranged between 1.5 and 8.5%. Angulomyces solicola sp. nov. is characterized by larger sporangia, spores, and fewer discharge papilla than A.argentinensis; Gorgonomyces thailandicus sp. nov. has larger zoospores and fewer discharge papillae in culture compared to G. haynaldii; Terramyces chiangraiensis sp. nov. produces larger sporangia than T. subangulosum. We delimited species of Angulomyces, Gorgonomyces and Terramyces using a tripartite approach that employed phylogeny, ITS genetic distances and Poisson tree processes (PTP). Results of these approaches suggest more than one species in each genus. This study contributes to the knowledge of chytrids, an understudied group in Thailand and worldwide.
Collapse
Affiliation(s)
- Vedprakash G Hurdeal
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Joyce E Longcore
- School of Biology and Ecology, University of Maine, Orono, ME 04469-5722, USA
| | - E B Gareth Jones
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - D Rabern Simmons
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, People's Republic of China
| | - Eleni Gentekaki
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand; School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand.
| |
Collapse
|
7
|
Phytochytrium and Sparrowiella, two new polycentric genera in Cladochytriales. Mycol Prog 2022. [DOI: 10.1007/s11557-022-01791-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|