1
|
Younis MH, Mohammed ER, Mohamed AR, Abdel-Aziz MM, Georgey HH, Abdel Gawad NM. Design, Synthesis and Anti-Mycobacterium tuberculosis Evaluation of New Thiazolidin-4-one and Thiazolo[3,2-a][1,3,5]triazine Derivatives. Bioorg Chem 2022; 124:105807. [DOI: 10.1016/j.bioorg.2022.105807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 11/02/2022]
|
2
|
Hassan GS, Georgey HH, Mohammed EZ, Omar FA. Anti-hepatitis-C virus activity and QSAR study of certain thiazolidinone and thiazolotriazine derivatives as potential NS5B polymerase inhibitors. Eur J Med Chem 2019; 184:111747. [PMID: 31604164 DOI: 10.1016/j.ejmech.2019.111747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/02/2019] [Accepted: 09/27/2019] [Indexed: 02/07/2023]
Abstract
The present study reports on evaluation of anti-HCV activity and QSAR of certain arylidenethiazolidinone derivatives as potential inhibitors of HCV-NS5B polymerase. The pursued compounds involving, 5-aryliden-3-arylacetamidothiazolidin-2,4-diones 4-6(a-f), 5-arylidine-2-(N-arylacetamido)-iminothiazolidin-4-one (10) and their rigid counterparts 5-arylidinethiazolotriazines 13-15(a-f), were synthesized and their structures confirmed by spectral and elemental analyses. The results of NS5B polymerase inhibition assay revealed compound 4e, as the most active inhibitor (IC50 = 0.035 μM), which is four folds greater than that of the reference agent, VCH-759, (IC50 = 0.14 μM). Meanwhile, compounds 4b, 4c, 5a, and 5c, and 13b, 14e and 15c displayed equipotency to 2 folds higher activity than VCH-759 (IC50 values: 0.085, 0.14, 0.14, 0.10, 0.12, 0.09 and 0.07 μM, respectively). Assessment of the anti-HCV activity (GT1a) using human hepatoma cell line (Huh-7.5) illustrates superior activity of 4e (EC50 = 3.80 μM) relative to VCH-759 (EC50 = 5.29 μM). Cytotoxicity evaluation on, Transformed normal cell lines (Human Liver Epithelial-2, THLE-2 and Proximal Tubular Epithelial, RPTEC/TERT1), demonstrate enhanced safety profile of 4e (CC50 = 102.77, 161.37 μM, respectively) compared to VCH-759 (CC50 = 61.83, 81.28 μM, respectively). Molecular docking of the synthesized derivatives to NS5B polymerase allosteric site (PDB: 2HWH) showed similar binding modes to that of the co-crystallized ligand. Moreover, QSAR models were established for the studied thiazolidinones and thiazolotriazines to investigate the molecular characteristics contributing to the observed NS5B polymerase inhibition activity. The obtained results inspire further investigations of thiazolidinones and thiazolotriazine aiming at affording more potent, safe and orally active non-nucleoside NS5B polymerase inhibitors as anti-HCV drug candidates.
Collapse
Affiliation(s)
- Ghaneya S Hassan
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University, Cairo, 11829, Egypt
| | - Hanan H Georgey
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Esraa Z Mohammed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| | - Farghaly A Omar
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, October 6 University, Giza, 12585, Egypt
| |
Collapse
|
3
|
Meng G, Zheng M, Wang M, Tong J, Ge W, Zhang J, Zheng A, Li J, Gao L, Li J. Design and synthesis of new potent PTP1B inhibitors with the skeleton of 2-substituted imino-3-substituted-5-heteroarylidene-1,3-thiazolidine-4-one: Part I. Eur J Med Chem 2016; 122:756-769. [PMID: 27526040 DOI: 10.1016/j.ejmech.2016.05.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/26/2016] [Accepted: 05/26/2016] [Indexed: 11/19/2022]
Abstract
A new series of 2-substituted imino-3-substituted-5- heteroarylidene-1,3-thiazolidine-4-ones as the potent bidentate PTP1B inhibitors were designed and synthesized in this paper. All of the new compounds were characterized and identified by spectra analysis. The biological screening test against PTP1B showed that some of these compounds have the positive inhibitory activity against PTP1B. The activity of the compounds with 5-substituted pyrrole on 5-postion of 1,3-thiazolidine-4-one are more potent than that of those compounds with 5-substituted pyridine group. Compound 14b, 14h and 14i showed IC50 values of 8.66 μM, 6.83 μM and 6.09 μM against PTP1B, respectively. Docking analysis of these active compounds with PTP1B showed the possible interaction modes of these biheterocyclic compounds with the active sites of PTP1B. The inhibition tests against oncogenetic CDC25B were also conducted on this set of compounds to evaluate the selectivity and possible anti-neoplastic activity. Compound 14b also showed the lowest IC50 of 1.66 μM against CDC25B among all the possible inhibitors, including 14g, 14h, 14i and 15c. Some pharmacological parameters including VolSurf, steric and electric descriptors of all the compounds were calculated to give some hints about the relative relationship with the biological activity. The result of this study might give some light on designing the possible anti-cancer drugs targeting at phosphatases. The most active compound 14i might be used as the lead compound for further structure modification of the new low molecular weight PTP1B inhibitors with the N-containing heterocyclic skeleton.
Collapse
Affiliation(s)
- Ge Meng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China.
| | - Meilin Zheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Mei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Weijuan Ge
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Jiehe Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76, Yanta West Road, Xi'an, Shaanxi, 710061, PR China
| | - Aqun Zheng
- School of Science, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi, 710049, PR China
| | - Jingya Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Lixin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, PR China.
| |
Collapse
|
4
|
Meng G, Zheng M, Dong M, Wang M, Zheng A, Guo Z. An Environment-friendly Synthesis of 2,3-Disubstituted-2-iminothiazoline-4-ones. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2323] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ge Meng
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an 710061 China
| | - Meilin Zheng
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an 710061 China
| | - Mengshu Dong
- School of Software Engineering; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Mei Wang
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an 710061 China
| | - Aqun Zheng
- School of Science; Xi'an Jiaotong University; Xi'an Shaanxi 710049 China
| | - Zengjun Guo
- School of Pharmacy, Health Science Center; Xi'an Jiaotong University; Xi'an 710061 China
| |
Collapse
|