1
|
Fonte M, Teixeira C, Gomes P. Improved synthesis of antiplasmodial 4-aminoacridines and 4,9-diaminoacridines. RSC Adv 2024; 14:6253-6261. [PMID: 38375018 PMCID: PMC10875606 DOI: 10.1039/d4ra00091a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024] Open
Abstract
Acridines are one of the most important nitrogen-containing heterocycle systems and have many applications in the therapeutic field. However, the synthesis of acridine-based scaffolds is not always straightforward. Herein, we report the optimization of two multi-step synthetic routes towards 4,9-diaminoacridines and 4-aminoacridines, which have shown promising antiplasmodial properties. The improved synthesis pathways make use of greener, simpler, and more efficient methods, with less reaction steps and increased overall yields, which were doubled in some cases. These are impactful results towards future approaches to the chemical synthesis of acridine-based compounds.
Collapse
Affiliation(s)
- Mélanie Fonte
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto Portugal
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto Portugal
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências Universidade do Porto Portugal
| |
Collapse
|
2
|
Shanmugaraj K, Campos CH, Mangalaraja RV, Nandhini K, Aepuru R, Torres CC, Singh DP, Kumar D, Ilanchelian M, Sharma A, Vo DVN. Gold nanoparticle-decorated earth-abundant clay nanotubes as catalyst for the degradation of phenothiazine dyes and reduction of 4-(4-nitrophenyl)morpholine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124447-124458. [PMID: 35294686 DOI: 10.1007/s11356-022-19523-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In the present work, halloysite nanotubes modified with gold nanoparticles (AuNPs-HNT) are successfully prepared by wet chemical method for the catalytic degradation of phenothiazine dyes (azure B (AZB) and toluidine blue O (TBO)) and also cleaner reduction of 4-(4-nitrophenyl)morpholine (4NM) in the sodium borohydride (NaBH4) media. The catalyst is formulated by modifying the HNT support with a 0.964% metal loading using the HNT supports modified with 3-aminopropyl-trimethoxysilane (APTMS) coupling agent to facilitate the anchoring sites to trap the AuNPs and to prevent their agglomeration/aggregation. The AuNPs-HNT catalyst is investigated for structural and morphological characterization to get insights about the formation of the catalyst for the effective catalytic reduction of dyes and 4NM. The microscopic studies demonstrate that AuNPs (2.75 nm) are decorated on the outer surface of HNT. The as-prepared AuNPs-HNT catalyst demonstrates AZB and TBO dye degradation efficiency up to 96% in 10 and 11 min, respectively, and catalytic reduction of 4NM to 4-morpholinoaniline (MAN) is achieved up to 97% in 11 min, in the presence of NaBH4 without the formation of any by-products. The pseudo-first-order rate constant (K1) value of the AuNPs-HNT catalyst for AZB, TBO, and 4NM were calculated to be 0.0078, 0.0055, and 0.0066 s-1, respectively. Moreover, the synthesized catalyst shows an excellent reusability with stable catalytic reduction for 7 successive cycles for both the dyes and 4NM. A plausible mechanism for the catalytic dye degradation and reduction of 4NM by AuNPs-HNT catalyst is proposed as well. The obtained results clearly indicate the potential of AuNPs-HNT as an efficient catalyst for the removal of dye contaminants from the aquatic environments and cleaner reduction of 4NM to MAN, insinuating future pharmaceutical applications.
Collapse
Affiliation(s)
- Krishnamoorthy Shanmugaraj
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Universidad de Concepción, Concepción, Chile.
| | - Cristian H Campos
- Departamento de Físico-Química, Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile
| | - Ramalinga Viswanathan Mangalaraja
- Advanced Ceramics and Nanotechnology Laboratory, Department of Materials Engineering, Universidad de Concepción, Concepción, Chile
- Technological Development Unit (UDT), University of Concepcion, Coronel Industrial Park, Coronel, Chile
| | - Karuppasamy Nandhini
- Department of Chemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641 046, India
| | - Radhamanohar Aepuru
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Cecilia C Torres
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Autopista Concepción-Talcahuano, 7100, Sede Concepción, Talcahuano, Chile
| | - Dinesh Pratap Singh
- Physics Department and Millennium Institute for Research in Optics (MIRO- ANID), Faculty of Science, University of Santiago of Chile (USACH), Av. Ecuador 3493, 9170124, Estación Central, Santiago, Chile
| | - Deepak Kumar
- School of Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, 144411, India
| | | | - Ajit Sharma
- School of Chemical Engineering and Physical Science, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, 755414, Vietnam
| |
Collapse
|
3
|
Kalola AG, Prasad P, Mokariya JA, Patel MP. A mild and selective Cu(II) salts-catalyzed reduction of nitro, azo, azoxy, N-aryl hydroxylamine, nitroso, acid halide, ester, and azide compounds using hydrogen surrogacy of sodium borohydride. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1983604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Pratibha Prasad
- Department of Chemistry, Sardar Patel University, Gujarat, India
| | | | - Manish P. Patel
- Department of Chemistry, Sardar Patel University, Gujarat, India
| |
Collapse
|
4
|
Formenti D, Ferretti F, Scharnagl FK, Beller M. Reduction of Nitro Compounds Using 3d-Non-Noble Metal Catalysts. Chem Rev 2018; 119:2611-2680. [PMID: 30516963 DOI: 10.1021/acs.chemrev.8b00547] [Citation(s) in RCA: 369] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The reduction of nitro compounds to the corresponding amines is one of the most utilized catalytic processes in the fine and bulk chemical industry. The latest development of catalysts with cheap metals like Fe, Co, Ni, and Cu has led to their tremendous achievements over the last years prompting their greater application as "standard" catalysts. In this review, we will comprehensively discuss the use of homogeneous and heterogeneous catalysts based on non-noble 3d-metals for the reduction of nitro compounds using various reductants. The different systems will be revised considering both the catalytic performances and synthetic aspects highlighting also their advantages and disadvantages.
Collapse
Affiliation(s)
- Dario Formenti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Francesco Ferretti
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Florian Korbinian Scharnagl
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock , Albert-Einstein-Straße 29a , 18059 Rostock , Germany
| |
Collapse
|