1
|
Nofal HR, Al-Karmalawy AA, Elmaaty AA, Ismail MF, Ali AK, Abbass EM. Pharmacophore-based, rationale design, and efficient synthesis of novel tetrahydrobenzo[b]thiophene candidates as potential dual Topo I/II inhibitors and DNA intercalators. Arch Pharm (Weinheim) 2024; 357:e2400217. [PMID: 38864845 DOI: 10.1002/ardp.202400217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/13/2024]
Abstract
A series of tetrahydrobenzo[b]thiophene derivatives was designed and synthesized as dual topoisomerase (Topo) I/II inhibitors implicating potential DNA intercalation. Ethyl-2-amino-3-cyano-4,5,6,7-tetrahydrobenzo[b]thiophene-4-carboxylate (1) was prepared by modification of the Gewald reaction procedure using a Fe2O3 nanocatalyst and then it was used as a building block for the synthesis of tetrahydrobenzo[b]thiophene candidates (2-14). Interestingly, compound 14 showed the best cytotoxic potential against hepatocellular, colorectal, and breast cancer cell lines (IC50 = 7.79, 8.10, and 3.53 µM), respectively, surpassing doxorubicin at breast cancer (IC50 = 4.17 µM). Meanwhile, the Topo I and II inhibition assay displayed that compound 3 could exhibit the best inhibitory potential among the investigated candidates (IC50 = 25.26 and 10.01 nM), respectively, in comparison to camptothecin (IC50 = 28.34 nM) and doxorubicin (IC50 = 11.01 nM), as reference standards. In addition, the DNA intercalation assay showed that compound 14 could display the best binding affinity with an IC50 value of 77.82 µM in comparison to doxorubicin (IC50 = 58.03 µM). Furthermore, cell cycle and apoptosis analyses described that compound 3 prompts the G1 phase arrest in michigan cancer foundation-7 cancer cells and increases the apoptosis ratio by 29.31% with respect to untreated cells (2.25%). Additionally, the conducted molecular docking assured the promising binding of the investigated members toward Topo I and II with potential DNA intercalation. Accordingly, the synthesized compounds could be treated as promising anticancer candidates for future optimization.
Collapse
Affiliation(s)
- Hager R Nofal
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Ahmed A Al-Karmalawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ahram Canadian University, Giza, Egypt
| | - Ayman Abo Elmaaty
- Medicinal Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mahmoud F Ismail
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Ali Khalil Ali
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| | - Eslam M Abbass
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo, Egypt
| |
Collapse
|
2
|
Agrawal N, Goswami R, Pathak S. Synthetic Methods for Various Chromeno-fused Heterocycles and their Potential as Antimicrobial Agents. Med Chem 2024; 20:115-129. [PMID: 37855281 DOI: 10.2174/0115734064274748231005074100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Chromenes are a significant family of heterocyclic chemicals that have a wide range of biological applications, a simple chemical structure, and only mildly undesirable side effects. The synthesis of a wide range of chromene analogs that displayed unexpected behaviors via numerous mechanisms was investigated by a number of different research teams, which led to the discovery of multiple pathways for their synthesis. In addition, different chromene-fused heterocycles exhibit a wide variety of fascinating biological actions, including those that are anticancer, anticonvulsant, antibacterial, anticholinesterase, antituberculosis, and anti-diabetic. In light of this, the purpose of this study is to highlight the many synthesis techniques and antibacterial activity associated with chromene-fused heterocyclic compounds. Moreover, such research can open avenues for exploring other therapeutic applications of these compounds in various disease areas, as their biological activities extend beyond antibacterial effects.
Collapse
Affiliation(s)
- Neetu Agrawal
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Radhika Goswami
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| | - Shilpi Pathak
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, UP, India
| |
Collapse
|
3
|
Nguyen HT, Nguyen Van H, Hoang Thi P, Thi TAD, Le‐Nhat‐Thuy G, Nguyen Thi QG, Tuan AN, Ba Thi C, Tran Quang H, Van Nguyen T. Synthesis and Cytotoxic Evaluation of New Fluoro and Trifluoromethyl Substituents Containing Chromeno[2,3‐
d
]pyrimidines. ChemistrySelect 2023. [DOI: 10.1002/slct.202300227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Affiliation(s)
- Ha Thanh Nguyen
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Ha Nguyen Van
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Military Institute of Chemistry and Environment, An Khanh Hoai Duc Ha Noi Vietnam
| | - Phuong Hoang Thi
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuyet Anh Dang Thi
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Giang Le‐Nhat‐Thuy
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quynh Giang Nguyen Thi
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Anh Nguyen Tuan
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Cham Ba Thi
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Hung Tran Quang
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Tuyen Van Nguyen
- Institute of Chemistry Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Graduate University of Science and Technology Vietnam Academy of Science and Technology 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
4
|
Nakhate AV, Ingale AP, Shinde SV. Silica Triflate Promoted Highly Efficient and Solvent-Free One-Pot Multicomponent Protocol for Synthesis of 2-Amino-4H-Chromenes. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2033800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Arjun V. Nakhate
- Department of Chemistry, Marathwada Institute of Technology, Aurangabad, India
| | - Ajit P. Ingale
- Department of Chemistry, Dada Patil College, Ahmednagar, India
| | | |
Collapse
|
5
|
Li Z, Rong D, Cao Y, Hu R, Huang G. Efficient Synthesis of Novel Spiro[indoline-3,5'-pyrano[2,3-d]pyrimidin]-2-one Derivatives and Antitumor Activity Evaluation. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Mamedov VА, Zhukova NА, Kadyrova MS. The Dimroth Rearrangement in the Synthesis of Condensed Pyrimidines - Structural Analogs of Antiviral Compounds. Chem Heterocycl Compd (N Y) 2021; 57:342-368. [PMID: 34024912 PMCID: PMC8121644 DOI: 10.1007/s10593-021-02913-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/16/2020] [Indexed: 11/30/2022]
Abstract
The review discusses the use of the Dimroth rearrangement in the synthesis of condensed pyrimidines which are key structural fragments of antiviral agents. The main attention is given to publications over the past 10 years. The bibliography includes 107 references.
Collapse
Key Words
- Dimroth rearrangement
- [1,2,4]triazolo[1,5-a]pyrimidines
- [1,2,4]triazolo[1,5-c]pyrimidines
- antiviral activity
- furo[2,3-d]pyrimidines
- imidazo[1,2-a]pyrimidines
- purines
- pyrazolo[3,4-d]pyrimidines
- pyrrolo[2,3-d]pyrimidines
- quinazolin(on)es
- thieno[2,3-d]pyrimidines
Collapse
Affiliation(s)
- Vakhid А. Mamedov
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St, Kazan, 420088 Russia
| | - Nataliya А. Zhukova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St, Kazan, 420088 Russia
| | - Milyausha S. Kadyrova
- Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, 8 Akademika Arbuzova St, Kazan, 420088 Russia
| |
Collapse
|
7
|
Ferreira VF, de B. da Silva T, Pauli FP, Ferreira PG, da S. M. Forezi L, de S. Lima CG, de C. da Silva F. Dimroth´s Rearrangement as a Synthetic Strategy Towards New Heterocyclic Compounds. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200805114837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Molecular rearrangements are important tools to increase the molecular diversity
of new bioactive compounds, especially in the class of heterocycles. This review deals
specifically with a very famous and widely applicable rearrangement known as the Dimroth
Rearrangement. Although it has originally been observed for 1,2,3-triazoles, its amplitude
was greatly expanded to other heterocycles, as well as from laboratory to large
scale production of drugs and intermediates. The reactions that were discussed in this review
were selected with the aim of demonstrating the windows that may be open by the
Dimroth's rearrangement, especially in what regards the development of new synthetic approaches
toward biologically active compounds.
Collapse
Affiliation(s)
- Vitor F. Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, CEP 24241-002, Niteroi- RJ, Brazil
| | - Thais de B. da Silva
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, CEP 24241-002, Niteroi- RJ, Brazil
| | - Fernanda P. Pauli
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| | - Patricia G. Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmaceutica, Faculdade de Farmacia, CEP 24241-002, Niteroi- RJ, Brazil
| | - Luana da S. M. Forezi
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| | - Carolina G. de S. Lima
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| | - Fernando de C. da Silva
- Universidade Federal Fluminense, Instituto de Quimica, Departamento de Quimica Organica, CEP 24020-150, Niteroi- RJ, Brazil
| |
Collapse
|
8
|
Abu El-Azm FSM, El-Shahawi MM, Elgubbi AS, Madkour HMF. Synthesis of new benzo[f]chromene-based heterocycles targeting anti-proliferative activity. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-02092-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Mashhoori M, Sandaroos R, Zeraatkar Moghaddam A. Highly Proficient Poly Ionic Liquid Functionalized Mn(III) Schiff‐Base Catalyst for Green Synthesis of Chromene Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202001518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Reza Sandaroos
- Department of Chemistry, Faculty of ScienceUniversity of Birjand Birjand Iran
| | | |
Collapse
|