1
|
Torabi Fard N, Ahmad Panahi H, Moniri E, Reza Soltani E, Mahdavijalal M. Stimuli-Responsive Dendrimers as Nanoscale Vectors in Drug and Gene Delivery Systems: A Review Study. JOURNAL OF POLYMERS AND THE ENVIRONMENT 2024; 32:4959-4985. [DOI: 10.1007/s10924-024-03280-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/03/2024] [Indexed: 01/06/2025]
|
2
|
Nasaj M, Farmany A, Shokoohizadeh L, Jalilian FA, Mahjoub R, Roshanaei G, Nourian A, Shayesteh OH, Arabestani M. Vancomycin and nisin-modified magnetic Fe 3O 4@SiO 2 nanostructures coated with chitosan to enhance antibacterial efficiency against methicillin resistant Staphylococcus aureus (MRSA) infection in a murine superficial wound model. BMC Chem 2024; 18:43. [PMID: 38395982 PMCID: PMC10893753 DOI: 10.1186/s13065-024-01129-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The objective of this research was to prepare some Fe3O4@SiO2@Chitosan (CS) magnetic nanocomposites coupled with nisin, and vancomycin to evaluate their antibacterial efficacy under both in vitro and in vivo against the methicillin-resistant Staphylococcus. aureus (MRSA). METHODS In this survey, the Fe3O4@SiO2 magnetic nanoparticles (MNPs) were constructed as a core and covered the surface of MNPs via crosslinking CS by glutaraldehyde as a shell, then functionalized with vancomycin and nisin to enhance the inhibitory effects of nanoparticles (NPs). X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), field emission scanning electron microscope (FE-SEM), vibrating sample magnetometer (VSM), and dynamic light scattering (DLS) techniques were then used to describe the nanostructures. RESULTS Based on the XRD, and FE-SEM findings, the average size of the modified magnetic nanomaterials were estimated to be around 22-35 nm, and 34-47 nm, respectively. The vancomycin was conjugated in three polymer-drug ratios; 1:1, 2:1 and 3:1, with the percentages of 45.52%, 35.68%, and 24.4%, respectively. The polymer/drug ratio of 1:1 exhibited the slowest release rate of vancomycin from the Fe3O4@SiO2@CS-VANCO nanocomposites during 24 h, which was selected to examine their antimicrobial effects under in vivo conditions. The nisin was grafted onto the nanocomposites at around 73.2-87.2%. All the compounds resulted in a marked reduction in the bacterial burden (P-value < 0.05). CONCLUSION The vancomycin-functionalized nanocomposites exhibited to be more efficient in eradicating the bacterial cells both in vitro and in vivo. These findings introduce a novel bacteriocin-metallic nanocomposite that can suppress the normal bacterial function on demand for the treatment of MRSA skin infections.
Collapse
Affiliation(s)
- Mona Nasaj
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Abbas Farmany
- Dental Research Center, School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Leili Shokoohizadeh
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Farid Aziz Jalilian
- Department of Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, Islamic Republic of Iran
| | - Reza Mahjoub
- Department of Pharmacology and Toxicology, School of Pharmacy, Medicinal Plants and Natural Products Research Center, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Health, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Park Mardome, Hamadan, Islamic Republic of Iran
| | - Alireza Nourian
- Department of Pathobiology, School of Veterinary Science, Bu-Ali Sina University, Hamedan, Islamic Republic of Iran
| | - Omid Heydari Shayesteh
- Department of Medicinal Chemistry, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran
| | - Mohammadreza Arabestani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Islamic Republic of Iran.
| |
Collapse
|
3
|
Yadav N, Yadav G, Ahmaruzzaman M. Microwave-assisted biodiesel production using -SO 3H functionalized heterogeneous catalyst derived from a lignin-rich biomass. Sci Rep 2023; 13:9074. [PMID: 37277444 DOI: 10.1038/s41598-023-36380-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023] Open
Abstract
The synthesis of biodiesel from renewable resources has immense potential as a sustainable and cost-effective energy alternative. In this work, a reusable -SO3H functionalized heterogeneous catalyst that has a total acid density of 2.06 mmol/g was prepared from walnut (Juglans regia) shell powder by low-temperature hydrothermal carbonization (WNS-SO3H). Walnut shell (WNS) contains more lignin (50.3%), which shows great resistance toward moisture. The prepared catalyst was employed for the effective conversion of oleic acid to methyl oleate by a microwave-assisted esterification reaction. The EDS analysis revealed the significant presence of sulfur (4.76 wt%), oxygen (51.24 wt%), and carbon (44 wt%) content. The results of the XPS analysis confirm the bonding of C-S, C-C, C=C, C-O, and C=O. Meanwhile, the presence of -SO3H (the responsible factor for the esterification of oleic acid) was confirmed by FTIR analysis. Under the optimized conditions (9 wt% catalyst loading, 1:16 oleic acid to methanol molar ratio, 60 min reaction time, and 85 °C temperature), the conversion of oleic acid to biodiesel was found to be 99.01 ± 0.3%. The obtained methyl oleate was characterized by employing 13C and 1H nuclear magnetic spectroscopy. The conversion yield and chemical composition of methyl oleate were confirmed by gas chromatography analysis. In conclusion, it can be a sustainable catalyst because the catalyst preparation controls the agro-waste, a great conversion is achieved due to the high lignin content, and the catalyst was reusable for five effective reaction cycles.
Collapse
Affiliation(s)
- Nidhi Yadav
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Gaurav Yadav
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, Silchar, Assam, 788010, India.
| |
Collapse
|
4
|
Mallah D, Mirjalili BBF, Bamoniri A. Fe 3O 4@nano-almondshell/Si(CH 2) 3/2-(1-piperazinyl)ethylamine as an effective magnetite almond shell-based nanocatalyst for the synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran derivatives. Sci Rep 2023; 13:6376. [PMID: 37076551 PMCID: PMC10115822 DOI: 10.1038/s41598-023-33286-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
The preparation and design of nano-catalysts based on magnetic biopolymers as green and biocompatible nano-catalysts have made many advances. This paper deals with the preparation of magnetite biopolymer-based Brønsted base nano-catalyst from a nano-almond (Prunus dulcis) shell. This magnetite biopolymer-based nano-catalyst was obtained through a simple process based on the core-shelling of nano-almond shell and Fe3O4 NPs and then the immobilization of 3-chloropropyltrimethoxysilane as linker and 2-aminoethylpiperazine as a basic section. Structural and morphological analysis of this magnetite biopolymer-based nano-catalyst were done using Fourier transform infrared spectroscopy, field emission scanning electron microscopy, X-ray diffraction, Thermogravimetric analysis, Vibrating sample magnetization, Energy-dispersive X-ray spectroscopy, Brunauer-Emmett-Teller, and Transmission electron microscopy techniques. The performance of the synthesized Fe3O4@nano-almondshell/Si(CH2)3/2-(1-piperazinyl)ethylamine as a novel magnetite biopolymer-based nano-catalyst for the synthesis of dihydropyrano[3,2-c]chromene and tetrahydrobenzo[b]pyran was investigated and showed excellent efficiency.
Collapse
Affiliation(s)
- Dina Mallah
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran
| | - Bi Bi Fatemeh Mirjalili
- Department of Chemistry, College of Science, Yazd University, P.O. Box 89195-741, Yazd, Islamic Republic of Iran.
| | - Abdolhamid Bamoniri
- Department of Organic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, Islamic Republic of Iran
| |
Collapse
|
5
|
Sadeq A, Mohamed Hasan Y, Mohsen Najm Z, Kadhim MM, Al Mashhadani ZI. A Novel and Efficient Magnetically Recoverable Copper Catalyst for Synthesis of Symmetrical Diaryl Selenides and Sulfides. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2187849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
| | | | - Zainab Mohsen Najm
- Anesthesia Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Mustafa M. Kadhim
- Medical Laboratory Techniques Department, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
6
|
Abdalkareem Jasim S, B. Mohammed D, Turki Jalil A, F. Smaisim G, Shareef Mohsen K, Abed Hussein S, Shafik MS. An Efficient and Attractive Synthetic Protocol for Three-component Preparation of NH-1,2,3-Triazoles Using a Novel Magnetically Recoverable Copper Catalyst. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2167217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | - Doaa B. Mohammed
- Department of Laser and Optical Electronics Engineering, Kut University College, Iraq
| | | | | | - Karrar Shareef Mohsen
- Information and Communication Technology Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Iraq
| | | | | |
Collapse
|
7
|
Nasehi N, Mirza B, Soleimani-Amiri S. Experimental and Theoretical Investigation on Imidazole Derivatives Using Magnetic Nanocatalyst: Green Synthesis, Characterization, and Mechanism Study. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2141275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Niloufar Nasehi
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Behrooz Mirza
- Department of Chemistry, Karaj Branch, Islamic Azad University, Karaj, Iran
| | | |
Collapse
|
8
|
Mir F, Hazeri N, Maghsoodlou MT, Lashkari M. Synthesis of Pyrazolopyranopyrimidine and Dihydropyrano[2,3-c]Pyrazole Derivatives Using Fe 3O 4@THAM-Piperazine as a Superparamagnetic Nanocatalyst under Green Condition. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Fatemeh Mir
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | - Nourallah Hazeri
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | - Malek Taher Maghsoodlou
- Department of Chemistry, Faculty of Sciences, University of Sistan and Baluchestan, Zahedan, Iran
| | | |
Collapse
|
9
|
Abdalkareem Jasim S, Eshmamatovich Zhumanov Z, Catalan Opulencia MJ, Kadhim MM, Ahmed Hamza T, Abed Hussein S, Sharma H, Thaeer Hammid A. Tribromide Immobilized on Amino-Functionalized Magnetic Nanoparticles: A Active Magnetically Recoverable Catalyst for the Synthesis of Heterocycles. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2094422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Saade Abdalkareem Jasim
- Medical Laboratory Techniques Department, Al-Maarif University College, Al-Anbar-Ramadi, Iraq
| | | | | | - Mustafa M. Kadhim
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | - Thulfeqar Ahmed Hamza
- Medical Laboratory Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | | | - Himanshu Sharma
- Department of Computer Engineering and Applications, GLA University, Mathura, India
| | - Ali Thaeer Hammid
- Computer Engineering Techniques Department, Faculty of Information Technology, Imam Ja’afar Al-Sadiq University, Baghdad, Iraq
| |
Collapse
|
10
|
Riadi Y, M. Kadhim M, Jawad Shoja S, Hussein Ali M, Fakri Mustafa Y, Sajjadi A. Copper (II) complex supported on the surface of magnetic nanoparticles modified with S-benzylisothiourea (Fe 3O 4@SiO 2-SMTU-Cu): A new and efficient nanomagnetic catalyst for the synthesis of quinazolines and amides. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Mustafa M. Kadhim
- Department of Dentistry, Kut University College, Kut, Wasit, Iraq
- College of technical engineering, The Islamic University, Najaf, Iraq
- Department of Pharmacy, Osol Aldeen University College, Baghdad, Iraq
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, Iraq
| | - Ahmad Sajjadi
- Faculty of Science, Department of chemistry, South Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|