Teixeira MDM, Patané JSL, Taylor ML, Gómez BL, Theodoro RC, de Hoog S, Engelthaler DM, Zancopé-Oliveira RM, Felipe MSS, Barker BM. Worldwide Phylogenetic Distributions and Population Dynamics of the Genus Histoplasma.
PLoS Negl Trop Dis 2016;
10:e0004732. [PMID:
27248851 PMCID:
PMC4889077 DOI:
10.1371/journal.pntd.0004732]
[Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022] Open
Abstract
Background
Histoplasma capsulatum comprises a worldwide complex of saprobiotic fungi mainly found in nitrogen/phosphate (often bird guano) enriched soils. The microconidia of Histoplasma species may be inhaled by mammalian hosts, and is followed by a rapid conversion to yeast that can persist in host tissues causing histoplasmosis, a deep pulmonary/systemic mycosis. Histoplasma capsulatum sensu lato is a complex of at least eight clades geographically distributed as follows: Australia, Netherlands, Eurasia, North American classes 1 and 2 (NAm 1 and NAm 2), Latin American groups A and B (LAm A and LAm B) and Africa. With the exception of the Eurasian cluster, those clades are considered phylogenetic species.
Methodology/Principal Findings
Increased Histoplasma sampling (n = 234) resulted in the revision of the phylogenetic distribution and population structure using 1,563 aligned nucleotides from four protein-coding regions. The LAm B clade appears to be divided into at least two highly supported clades, which are geographically restricted to either Colombia/Argentina or Brazil respectively. Moreover, a complex population genetic structure was identified within LAm A clade supporting multiple monophylogenetic species, which could be driven by rapid host or environmental adaptation (~0.5 MYA). We found two divergent clades, which include Latin American isolates (newly named as LAm A1 and LAm A2), harboring a cryptic cluster in association with bats.
Conclusions/Significance
At least six new phylogenetic species are proposed in the Histoplasma species complex supported by different phylogenetic and population genetics methods, comprising LAm A1, LAm A2, LAm B1, LAm B2, RJ and BAC-1 phylogenetic species. The genetic isolation of Histoplasma could be a result of differential dispersion potential of naturally infected bats and other mammals. In addition, the present study guides isolate selection for future population genomics and genome wide association studies in this important pathogen complex.
Histoplasmosis is a potentially severe fungal disease of mammals caused by Histoplasma capsulatum. The highest incidence of the disease is reported on the American continent, and approximately 30% of HIV and histoplasmosis co-infections are fatal. Previous studies have suggested at least 7 phylogenetic species within H. capsulatum, however by increasing taxon sampling and using different phylogenetic and population genetic methods, we detect at least 5 additional phylogenetic species within Latin America (LAm A1, LAm A2, LAm B1, LAm B2, RJ and BAC-1). These phylogenetic species are nested in the former LAm A clade. We found evidence that bats may be a cause of speciation in Histoplasma, as well-supported monophyletic clades were found in association with different species of bats. The radiation of the Latin American H. capsulatum species took a place around 5 million years ago, which is consistent with the radiation and diversification of bat species. Previous phylogenetic distribution of Histoplasma is upheld and strong support is indicated for the species delineation and evolution of this important pathogen.
Collapse