1
|
Finneran DJ, Nash KR. Neuroinflammation and fractalkine signaling in Alzheimer's disease. J Neuroinflammation 2019; 16:30. [PMID: 30744705 PMCID: PMC6371521 DOI: 10.1186/s12974-019-1412-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 01/23/2019] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a progressive, neurodegenerative disorder, and the most common form of dementia. As the understanding of AD has progressed, it is now believed that AD is an amyloid-initiated tauopathy with neuroinflammation serving as the link between amyloid deposition, tau pathology, and neurodegeneration. As microglia are the main immune effectors in the central nervous system, they have been the focus of attention in studies investigating the neuroinflammatory component of AD. Therefore, recent work has focused on immunomodulators, which can alter microglial activation without suppressing activity, as potential therapeutics for AD. Fractalkine (CX3CL1; FKN), a unique chemokine with a one-to-one relationship with its receptor, signals through its cognate receptor (CX3CR1) to reduce expression of pro-inflammatory genes in activated microglia. Disrupting FKN signaling has opposing effects on the two hallmark pathologies of AD, but over-expressing a soluble FKN has been shown to reduce tau pathology while not altering amyloid pathology. Recently, differential signaling has been reported when comparing two cleavage variants of soluble FKN. These differential effects may explain recent studies reporting seemingly conflicting results regarding the effect of FKN over expression on AD pathologies.
Collapse
Affiliation(s)
- Dylan J Finneran
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Bvld, Tampa, FL, 33612, USA.
| | - Kevin R Nash
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Bvld, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Two polymorphisms in the Fractalkine receptor CX3CR1 gene influence the development of atherosclerosis: a meta-analysis. DISEASE MARKERS 2014; 2014:913678. [PMID: 25221380 PMCID: PMC4158466 DOI: 10.1155/2014/913678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/12/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022]
Abstract
Background. The associations between the Fractalkine receptor (CX3CR1) gene T280M (rs3732378) and V249I (rs3732379) polymorphisms and atherosclerosis (AS) risk are conflicting. The aim of this meta-analysis was undertaken to assess their associations. Methods. PubMed, Embase, Web of Science, Medline, Cochrane database, and CNKI were searched to get the genetic association studies. All statistical analyses were done with Stata 11.0. Results. Twenty-five articles involving 49 studies were included in the final meta-analysis. The analysis showed that the 280M allele carriers of the CX3CR1 T280M polymorphism decreased the risk of AS and coronary artery disease (CAD) in the heterozygous state but increased the risk of ischemic cerebrovascular disease (ICVD) in the homozygote state. The 249I allele carriers of the CX3CR1 V249I polymorphism decreased the risk of AS and CAD in the heterozygous state. The V249I-T280M combined genotype VITM and IITM also decreased the risk of AS. Conclusions. The present meta-analysis suggests that the CX3CR1 T280M and V249I polymorphisms are associated with the susceptibility to AS. However, the results should be interpreted with caution because of the high heterogeneity in the meta-analysis.
Collapse
|
3
|
Garcia JA, Pino PA, Mizutani M, Cardona SM, Charo IF, Ransohoff RM, Forsthuber TG, Cardona AE. Regulation of adaptive immunity by the fractalkine receptor during autoimmune inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 191:1063-72. [PMID: 23817416 DOI: 10.4049/jimmunol.1300040] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Fractalkine, a chemokine anchored to neurons or peripheral endothelial cells, serves as an adhesion molecule or as a soluble chemoattractant. Fractalkine binds CX3CR1 on microglia and circulating monocytes, dendritic cells, and NK cells. The aim of this study is to determine the role of CX3CR1 in the trafficking and function of myeloid cells to the CNS during experimental autoimmune encephalomyelitis (EAE). Our results show that, in models of active EAE, Cx3cr1(-/-) mice exhibited more severe neurologic deficiencies. Bone marrow chimeric mice confirmed that CX3CR1 deficiency in bone marrow enhanced EAE severity. Notably, CX3CR1 deficiency was associated with an increased accumulation of CD115(+)Ly6C(-)CD11c(+) dendritic cells into EAE-affected brains that correlated with enhanced demyelination and neuronal damage. Furthermore, higher IFN-γ and IL-17 levels were detected in cerebellar and spinal cord tissues of CX3CR1-deficient mice. Analyses of peripheral responses during disease initiation revealed a higher frequency of IFN-γ- and IL-17-producing T cells in lymphoid tissues of CX3CR1-deficient as well as enhanced T cell proliferation induced by CX3CR1-deficient dendritic cells. In addition, adoptive transfer of myelin oligodendrocyte glycoprotein35-55-reactive wild-type T cells induced substantially more severe EAE in CX3CR1-deficient recipients when compared with wild-type recipients. Collectively, the data demonstrate that besides its role in chemoattraction, CX3CR1 is a key regulator of myeloid cell activation contributing to the establishment of adaptive immune responses.
Collapse
Affiliation(s)
- Jenny A Garcia
- Department of Biology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Cardona SM, Garcia JA, Cardona AE. The fine balance of chemokines during disease: trafficking, inflammation, and homeostasis. Methods Mol Biol 2013; 1013:1-16. [PMID: 23625489 PMCID: PMC3980472 DOI: 10.1007/978-1-62703-426-5_1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The action of chemokines (or "chemotactic cytokines") is recognized as an integral part of inflammatory and regulatory processes. Leukocyte mobilization during physiological conditions, trafficking of various cell types during pathological conditions, cell activation, and angiogenesis are among the target functions exerted by chemokines upon signaling via their specific receptors. Current research is focused in analyzing changes in chemokine/chemokine receptor patterns during various diseases with the aim to modulate pathological trafficking of cells, or to attract particular cell types to specific tissues. This review focuses on defining the role(s) of certain chemokine ligands and receptors in inflammatory neurological conditions such as multiple sclerosis. In addition, the role(s) of chemokines in neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease is also described, as well as the contribution of chemokines to the pathogenesis of cancer, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
- Sandra M Cardona
- Department of Biology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | | | | |
Collapse
|
5
|
Singh N, Rai H, Sinha N, Kumar S, Pandey CM, Agrawal S. Association of V249I and T280M Polymorphisms in the Chemokine ReceptorCX3CR1Gene with Early Onset of Coronary Artery Disease Among North Indians. Genet Test Mol Biomarkers 2012; 16:756-60. [DOI: 10.1089/gtmb.2011.0256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Neha Singh
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Himanshu Rai
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | | | - Sudeep Kumar
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Chandra M. Pandey
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Suraksha Agrawal
- Department of Medical Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
6
|
Singh N, Sinha N, Kumar S, Pandey CM, Agrawal S. Polymorphism in chemokine receptor genes and risk of acute myocardial infarction in North Indian population. Mol Biol Rep 2011; 39:2753-9. [PMID: 21744265 DOI: 10.1007/s11033-011-1031-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Accepted: 06/03/2011] [Indexed: 01/22/2023]
Abstract
Chemokines regulates the trafficking of leukocytes to the site of inflammation hence may be implicated in cardiac events. Currently no consistent effects have been revealed their role in acute myocardial infarction (MI). The aim of current study was to investigate the impact of human chemokine receptor genetic variants, CCR5-Δ32 insertion/deletion, CCR5-59029-A/G, CX3CR1-V249I and CX3CR1-T280 M on acute MI. 230 acute MI and 300 controls were examined. Patients carrying CCR5-Δ32 genotype were at three times higher risk of developing MI odds ratio (OR, 3.24, CI 1.127-9.356, P = 0.04). Significant association was found with risk of acute MI in recipients who possessed homozygous 59029-A allele (OR 1.47, CI 1.03-2.09, P = 0.03). While CX3CR1-I249 and M280 were found to be protective in MI patients with OR 0.46, CI 0.32-0.66, P < 0.0001 and OR 0.36, CI 0.24-0.55, P < 0.0001, respectively. It might be possible that risk of acute MI is associated with genetic variation in chemokine receptors, i.e., CCR5 and CX3CR1.
Collapse
Affiliation(s)
- Neha Singh
- Department of Cardiology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, 226014 Uttar Pradesh, India.
| | | | | | | | | |
Collapse
|
7
|
D'Haese JG, Demir IE, Friess H, Ceyhan GO. Fractalkine/CX3CR1: why a single chemokine-receptor duo bears a major and unique therapeutic potential. Expert Opin Ther Targets 2010; 14:207-19. [PMID: 20055718 DOI: 10.1517/14728220903540265] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
IMPORTANCE OF THE FIELD Fractalkine, also known as CX3CL1, is the unique member of the fourth class of chemokines and mediates both chemotaxis and adhesion of inflammatory cells via its highly selective receptor CX3CR1. Fractalkine mediates inflammatory responses and pain sensation and is involved in the pathogenesis and progression of numerous inflammatory disorders and malignancies. AREAS COVERED IN THIS REVIEW We performed a Medline/PubMed search to detect all published studies that explored the role of fractalkine and CX3CR1 and the possibilities of therapeutic intervention in the fractalkine/CX3CR1 axis in a wide range of clinical disorders, using CX3CR1 blocking antibodies, different fractalkine antagonists, CX3CR1 depletion or transfection of fractalkine expression vectors. WHAT THE READER WILL GAIN This review summarizes the role of fractalkine and its receptor CX3CR1 in various diseases, focusing on their high potential as novel therapeutic targets, with special emphasis on pancreatic diseases. TAKE HOME MESSAGE The reviewed studies provide promising results demonstrating fractalkine and CX3CR1 as potential target molecules for future therapeutics that may attenuate pain, inflammation and furthermore serve as an anti-cancer therapy. However, to date, no therapeutics targeting fractalkine or CX3CR1 are in clinical use.
Collapse
Affiliation(s)
- Jan G D'Haese
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, D-81675 Munich, Germany
| | | | | | | |
Collapse
|
8
|
|
9
|
Matzhold EM, Trummer O, Grünbacher G, Zulus B, Boehm BO, März W, Renner W. Association of polymorphisms in the chemokine receptor CX3CR1 gene with coronary artery disease. Cytokine 2009; 47:224-7. [PMID: 19628406 DOI: 10.1016/j.cyto.2009.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 06/24/2009] [Accepted: 06/27/2009] [Indexed: 12/01/2022]
Abstract
Two chemokine receptor CX3CR1 gene variants, V249I and T280M, have been implicated in coronary artery diseases (CAD). Currently no consistent effect has been revealed and their role in cardiovascular disease is still conflicting. In the present study the association of CX3CR1 genotypes with CAD and myocardial infarction (MI) was investigated in the Ludwigshafen Risk and Cardiovascular Health (LURIC) cohort, including 3316 individuals in whom cardiovascular disease angiographically has been defined or ruled out. Similarly to previous studies, the alleles I249 and M280 were in strong linkage disequilibrium and formed an I(249)M(280) haplotype. However, there was no relationship between CX3CR1 genotypes or corresponding haplotypes and the prevalence of CAD or MI. Adjusted for classical risk factors (age, sex, hypertension, dyslipidemia, diabetes mellitus and smoking), the odds ratio (OR) of V249I for CAD was 0.95 (95% confidence interval (CI)=0.78-1.15, p=0.61). The OR of T280M for CAD was 0.83 (95% CI=0.66-1.04, p=0.11). Furthermore, CX3CR1 variants were not associated with C-reactive protein levels, age at onset of CAD, severity of CAD and MI. In conclusion, present data of LURIC do not support the hypothesis that common variants of the CX3CR1 gene are associated with the presence of CAD or MI.
Collapse
Affiliation(s)
- Eva M Matzhold
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University, Graz, Austria
| | | | | | | | | | | | | |
Collapse
|
10
|
Genetic diversity of CX3CR1 gene and coronary artery disease: new insights through a meta-analysis. Atherosclerosis 2009; 207:8-15. [PMID: 19439304 DOI: 10.1016/j.atherosclerosis.2009.03.044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Revised: 03/06/2009] [Accepted: 03/24/2009] [Indexed: 12/13/2022]
Abstract
A significant portion of current medical research is devoted to the pursuit of genetic markers that can be used to identify disease or predict susceptibility to disease. In such a quest many investigators hypothesized that genetic variations that alter signalling pathways involved in atherosclerosis affect susceptibility to coronary artery disease (CAD). Fractalkine (FKN) is a small cytokine involved in monocyte chemotaxis and activation. Two single nucleotide polymorphisms, V249I and T280M, have been identified in the receptor coding sequence of FKN. The polymorphisms alter ligand-receptor affinity and are believed to influence an individual's susceptibility to atherosclerosis. Several investigators have tested the latter hypothesis with inconsistent results. In order to clarify the effect of the two polymorphisms on susceptibility to CAD we performed a meta-analysis, using pooled data retrieved from seven case-control studies. In total, 2000 CAD patients and 2841 subjects without evidence of cardiovascular disease were included in the meta-analysis. The 280M allele was associated with a reduced risk for CAD in the heterozygous state. Consequently, this effect was attributed to the only 280M-containing haplotype: I(249)M(280). The latter haplotype was found to be significantly more frequent in the control population's gene pool. Although we do not believe that the retrieved odds ratios render the T280M polymorphism a candidate genetic marker for clinical applications, we do believe that the above genotype-phenotype interaction is indicative of the strong associations between FKN-induced pathways and CAD.
Collapse
|