1
|
Yu S, Chen L, Zhang M, Lu Y. Unveiling the hidden power of noncoding RNAs in pediatric respiratory diseases. Allergol Immunopathol (Madr) 2024; 52:128-136. [PMID: 39515807 DOI: 10.15586/aei.v52i6.1127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Respiratory diseases in children are common health problems that significantly impact their quality of life and health status, and this has its own unique challenges compared to adults. A growing body of research has focused on epigenetic mechanisms that relate with the development of various diseases, such as pediatric respiratory diseases. Noncoding RNAs (ncRNAs), especially long noncoding RNAs, microRNA, and circular RNA, are reported to play a regulatory role in pediatric respiratory diseases whose mutations or aberrant expressions are strongly associated with the development of these diseases. In this review, we mainly discussed the functions of these three ncRNAs in pediatric respiratory diseases.
Collapse
Affiliation(s)
- Shishu Yu
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Lili Chen
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mingyao Zhang
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yu Lu
- Department of Pediatrics, The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China;
| |
Collapse
|
2
|
Tsukuda TK, Tsuji K, Nishimori A, Ito T, Kobayashi Y, Suzuki T, Yokoyama A. Elevated Proportions of Circulating CXCR5 + Follicular Helper T Cells Reflect the Presence of Airway Obstruction in Asthma. J Immunol Res 2024; 2024:2020514. [PMID: 39346781 PMCID: PMC11427719 DOI: 10.1155/2024/2020514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/14/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
Materials and Methods Using flow cytometry, we identified and quantified Group 2 innate lymphocytes, T helper 2 cells, follicular helper T cells, and T helper 17 cells in peripheral blood samples from 49 individuals with asthma. We then conducted cross-sectional analyses to assess relationships between levels of these immune cells and lung function parameters, including the percentage predicted forced expiratory volume in 1 s (%FEV1). We also examined correlations between the proportions of immune cells and type 2 biomarkers. Results Proportions of CXCR5+ follicular helper T cells in human peripheral blood, as opposed to Group 2 innate lymphoid cells (ILC2) or T helper 2 cells, were significantly higher in cases with %FEV1 < 80% compared to those with %FEV1 ≥ 80%. Further, these proportions correlated negatively with %FEV1 and positively with blood eosinophil counts. Conclusions The proportion of circulating follicular helper T cells, but not T helper 2 cells or Group 2 innate lymphoid cells, may reflect the presence of airway obstruction caused by persistent type 2 inflammation.
Collapse
Affiliation(s)
- Tsukie Kin Tsukuda
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Kimiko Tsuji
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Akari Nishimori
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Takehiko Ito
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Yuka Kobayashi
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Taro Suzuki
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| | - Akihito Yokoyama
- Department of Respiratory Medicine and AllergologyKochi Medical SchoolKochi University, Kochi, Japan
| |
Collapse
|
3
|
Hong X, Jiang M, Kho AT, Tiwari A, Guo H, Wang AL, McGeachie MJ, Weiss ST, Tantisira KG, Li J. Circulating miRNAs associate with historical childhood asthma hospitalization in different serum vitamin D groups. Respir Res 2024; 25:118. [PMID: 38459594 PMCID: PMC10921757 DOI: 10.1186/s12931-024-02737-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/17/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Vitamin D may help to alleviate asthma exacerbation because of its anti-inflammation effect, but the evidence is inconsistent in childhood asthma. MiRNAs are important mediators in asthma pathogenesis and also excellent non-invasive biomarkers. We hypothesized that circulating miRNAs are associated with asthma exacerbation and modified by vitamin D levels. METHODS We sequenced baseline serum miRNAs from 461 participants in the Childhood Asthma Management Program (CAMP). Logistic regression was used to associate miRNA expression with asthma exacerbation through interaction analysis first and then stratified by vitamin D insufficient and sufficient groups. Microarray from lymphoblastoid B-cells (LCLs) treated by vitamin D or sham of 43 subjects in CAMP were used for validation in vitro. The function of miRNAs was associated with gene modules by weighted gene co-expression network analysis (WGCNA). RESULTS We identified eleven miRNAs associated with asthma exacerbation with vitamin D effect modification. Of which, five were significant in vitamin D insufficient group and nine were significant in vitamin D sufficient group. Six miRNAs, including hsa-miR-143-3p, hsa-miR-192-5p, hsa-miR-151a-5p, hsa-miR-24-3p, hsa-miR-22-3p and hsa-miR-451a were significantly associated with gene modules of immune-related functions, implying miRNAs may mediate vitamin D effect on asthma exacerbation through immune pathways. In addition, hsa-miR-143-3p and hsa-miR-451a are potential predictors of childhood asthma exacerbation at different vitamin D levels. CONCLUSIONS miRNAs are potential mediators of asthma exacerbation and their effects are directly impacted by vitamin D levels.
Collapse
Affiliation(s)
- Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Mingye Jiang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
| | - Alvin T Kho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA, USA
| | - Anshul Tiwari
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haiyan Guo
- Department of Respiratory and Critical Care Medicine, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Disease, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen, China
| | - Alberta L Wang
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J McGeachie
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Partners Personalized Medicine, Partners Healthcare, Boston, MA, USA
| | - Kelan G Tantisira
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Pediatrics, Division of Respiratory Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong, China.
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Xu SJ, Chen JH, Chang S, Li HL. The role of miRNAs in T helper cell development, activation, fate decisions and tumor immunity. Front Immunol 2024; 14:1320305. [PMID: 38264670 PMCID: PMC10803515 DOI: 10.3389/fimmu.2023.1320305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
T helper (Th) cells are central members of adaptive immunity and comprise the last line of defense against pathogen infection and malignant cell invasion by secreting specific cytokines. These cytokines then attract or induce the activation and differentiation of other immune cells, including antibody-producing B cells and cytotoxic CD8+ T cells. Therefore, the bidirectional communication between Th cells and tumor cells and their positioning within the tumor microenvironment (TME), especially the tumor immune microenvironment (TIME), sculpt the tumor immune landscape, which affects disease initiation and progression. The type, number, and condition of Th cells in the TME and TIME strongly affect tumor immunity, which is precisely regulated by key effectors, such as granzymes, perforins, cytokines, and chemokines. Moreover, microRNAs (miRNAs) have emerged as important regulators of Th cells. In this review, we discuss the role of miRNAs in regulating Th cell mediated adaptive immunity, focusing on the development, activation, fate decisions, and tumor immunity.
Collapse
Affiliation(s)
- Shi-Jun Xu
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Jin-Hua Chen
- Department of Pharmacy, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Suhwan Chang
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hai-Liang Li
- Department of Interventional Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
- Henan Medical Device Engineering Research Center of Interventional Therapy for Non-vascular Tumors, Henan Cancer Hospital, Zhengzhou, Henan, China
- Department of Radiology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Liu J, Li J, Yin J. Changes of allergic inflammation and immunological parameters after Alt a 1 and A. alternata immunotherapy in mice. World Allergy Organ J 2023; 16:100807. [PMID: 37638361 PMCID: PMC10457585 DOI: 10.1016/j.waojou.2023.100807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 07/18/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Background The efficacy of allergen-specific subcutaneousimmunotherapy (SCIT) with Alt a 1 of the fungus A. alternata is still unknown. Yet, few studies compare the therapeutic effects and immunological mechanisms of Alt a 1 and A. alternata extracts. We aim to explore and compare the changes in allergic inflammation and immunological mechanisms of Alt a 1 and A. alternata in mice. Methods Female BALB/c mice administrated recombinant Alt a 1 (rAlt a 1), native Alt a 1 (nAlt a 1), and A. alternata. Lung histology, airway hyper-reactivity (AHR), bronchoalveolar lavage fluid (BALF) cytokine levels, serum immunoglobulin responses, the expression of Bcl-6, the percentages of T follicular helper cells (Tfh), cytokine-related Tfh subtypes, regulatory B cells (Breg), and IL-10+ Breg cells were detected. Results High-purity nAlt 1 protein was obtained. SCIT with Alt a 1 and Alternaria decreased airway and lung inflammation, including improvement of lung pathology, lower levels of AHR, reduction of total cell numbers, and IL-4 and IL-13 levels in BALF. Furthermore, Alt a 1-SCIT effectively suppressed the IgE responses, elevated IgG titers, and was superior in decreasing the expression of Bcl-6. Additionally, Alternaria-SCIT significantly decreased the expression of Tfh cells, L-4+ Tfh, and IL-5+ Tfh cells in the spleen, whereas Alt a 1 showed superior therapeutic effects in the lymph node. IL-13+ Tfh cells in these two treatment groups not being significant. IL-17A+ Tfh cells were alleviated most effectively after A. alternata-SCIT in both the spleen and lymph node. Intriguingly, IL-10+ Breg cells decreased remarkably in response to SCIT with rAlt a 1. Conclusions Treatments with Alt a 1 and A. alternata extracts had beneficial effects on allergic inflammation. Alt a 1-SCIT resulted in prominent improvement in the immunoglobulin responses, Bcl-6, and IL-10+ Breg cells. Alternaria-SCIT was more likely to suppress the expression of Tfh and cytokine-related Tfh subtypes.
Collapse
Affiliation(s)
- Juan Liu
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| | - Junda Li
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| | - Jia Yin
- Department of Allergy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing Key Laboratory of Precision Medicine for Diagnosis and Treatment on Allergic Diseases, Beijing, China
- National Clinical Research Center for Dermatologic and Immunologic Disease (NCRC-DID), Beijing, China
| |
Collapse
|
6
|
Studies on the role of non-coding RNAs in controlling the activity of T cells in asthma. Noncoding RNA Res 2023; 8:211-217. [PMID: 36865391 PMCID: PMC9972402 DOI: 10.1016/j.ncrna.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Abstract
Bronchial asthma, commonly known as asthma, is a chronic inflammatory disease characterized by airway inflammation, increased responsiveness and changes in airway structure. T cells, particularly T helper cells, play a crucial role in the disease. Non-coding RNAs, which are RNAs that do not code for proteins, mainly include microRNAs, long non-coding RNAs, and circular RNAs, play a role in regulating various biological processes. Studies have shown that non-coding RNAs have an important role in the activation and transformation of T cells and other biological processes in asthma. The specific mechanisms and clinical applications are worth further examination. This article reviews the recent research on the role of microRNAs, long non-coding RNAs and circular RNAs in T cells in asthma.
Collapse
|
7
|
The Role of Noncoding RNA in Airway Allergic Diseases through Regulation of T Cell Subsets. Mediators Inflamm 2022; 2022:6125698. [PMID: 36248190 PMCID: PMC9553461 DOI: 10.1155/2022/6125698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/31/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Allergic rhinitis and asthma are common airway allergic diseases, the incidence of which has increased annually in recent years. The human body is frequently exposed to allergens and environmental irritants that trigger immune and inflammatory responses, resulting in altered gene expression. Mounting evidence suggested that epigenetic alterations were strongly associated with the progression and severity of allergic diseases. Noncoding RNAs (ncRNAs) are a class of transcribed RNA molecules that cannot be translated into polypeptides and consist of three major categories, microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs). Previous studies showed that ncRNAs were involved in the physiopathological mechanisms of airway allergic diseases and contributed to their occurrence and development. This article reviews the current state of understanding of the role of noncoding RNAs in airway allergic diseases, highlights the limitations of recent studies, and outlines the prospects for further research to facilitate the clinical translation of noncoding RNAs as therapeutic targets and biomarkers.
Collapse
|
8
|
Kyyaly MA, Vorobeva EV, Kothalawala DM, Fong WCG, He P, Sones CL, Al-Zahrani M, Sanchez-Elsner T, Arshad SH, Kurukulaaratchy RJ. MicroRNAs: A Promising Tool for Asthma Diagnosis and Severity Assessment. A Systematic Review. J Pers Med 2022; 12:jpm12040543. [PMID: 35455659 PMCID: PMC9030707 DOI: 10.3390/jpm12040543] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Micro RNAs (miRNAs) are short, non-coding RNAs (Ribonucleic acids) with regulatory functions that could prove useful as biomarkers for asthma diagnosis and asthma severity-risk stratification. The objective of this systematic review is to identify panels of miRNAs that can be used to support asthma diagnosis and severity-risk assessment. Three databases (Medline, Embase, and SCOPUS) were searched up to 15 September 2020 to identify studies reporting differential expression of specific miRNAs in the tissues of adults and children with asthma. Studies reporting miRNAs associations in animal models that were also studied in humans were included in this review. We identified 75 studies that met our search criteria. Of these, 66 studies reported more than 200 miRNAs that are differentially expressed in asthma patients when compared to non-asthmatic controls. In addition, 16 studies reported 17 miRNAs that are differentially expressed with differences in asthma severity. We were able to construct two panels of miRNAs that are expressed in blood and can serve as core panels to further investigate the practicality and efficiency of using miRNAs as non-invasive biomarkers for asthma diagnosis and severity-risk assessment, respectively.
Collapse
Affiliation(s)
- Mohammed Aref Kyyaly
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
- Biomedical Science, Faculty of Sport, Health and Social Sciences, Solent University Southampton, Southampton SO14 0YN, UK
| | - Elena Vladimirovna Vorobeva
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
| | - Dilini M. Kothalawala
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton SO16 6YD, UK;
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Wei Chern Gavin Fong
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton SO16 6YD, UK;
| | - Peijun He
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK; (P.H.); (C.L.S.)
| | - Collin L. Sones
- Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ, UK; (P.H.); (C.L.S.)
| | - Mohammad Al-Zahrani
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- Faculty of Applied Medical Sciences, Al-Baha University, Al Baha 65731, Saudi Arabia
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton SO16 6YD, UK;
| | - Ramesh J. Kurukulaaratchy
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK; (M.A.K.); (E.V.V.); (W.C.G.F.); (M.A.-Z.); (T.S.-E.); (S.H.A.)
- The David Hide Asthma and Allergy Research Centre, Isle of Wight PO30 5TG, UK
- NIHR Southampton Biomedical Research Centre, University Hospitals Southampton, Southampton SO16 6YD, UK;
- Correspondence: ; Tel.: +44-023-8120-5232
| |
Collapse
|
9
|
Soni DK, Biswas R. Role of Non-Coding RNAs in Post-Transcriptional Regulation of Lung Diseases. Front Genet 2021; 12:767348. [PMID: 34819948 PMCID: PMC8606426 DOI: 10.3389/fgene.2021.767348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs (ncRNAs), notably microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), have recently gained increasing consideration because of their versatile role as key regulators of gene expression. They adopt diverse mechanisms to regulate transcription and translation, and thereby, the function of the protein, which is associated with several major biological processes. For example, proliferation, differentiation, apoptosis, and metabolic pathways demand fine-tuning for the precise development of a specific tissue or organ. The deregulation of ncRNA expression is concomitant with multiple diseases, including lung diseases. This review highlights recent advances in the post-transcriptional regulation of miRNAs and lncRNAs in lung diseases such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, and idiopathic pulmonary fibrosis. Further, we also discuss the emerging role of ncRNAs as biomarkers as well as therapeutic targets for lung diseases. However, more investigations are required to explore miRNAs and lncRNAs interaction, and their function in the regulation of mRNA expression. Understanding these mechanisms might lead to early diagnosis and the development of novel therapeutics for lung diseases.
Collapse
Affiliation(s)
- Dharmendra Kumar Soni
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roopa Biswas
- Department of Anatomy, Physiology and Genetics, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
10
|
Jeong J, Lee HK. The Role of CD4 + T Cells and Microbiota in the Pathogenesis of Asthma. Int J Mol Sci 2021; 22:11822. [PMID: 34769255 PMCID: PMC8584410 DOI: 10.3390/ijms222111822] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/22/2022] Open
Abstract
Asthma, a chronic respiratory disease involving variable airflow limitations, exhibits two phenotypes: eosinophilic and neutrophilic. The asthma phenotype must be considered because the prognosis and drug responsiveness of eosinophilic and neutrophilic asthma differ. CD4+ T cells are the main determinant of asthma phenotype. Th2, Th9 and Tfh cells mediate the development of eosinophilic asthma, whereas Th1 and Th17 cells mediate the development of neutrophilic asthma. Elucidating the biological roles of CD4+ T cells is thus essential for developing effective asthma treatments and predicting a patient's prognosis. Commensal bacteria also play a key role in the pathogenesis of asthma. Beneficial bacteria within the host act to suppress asthma, whereas harmful bacteria exacerbate asthma. Recent literature indicates that imbalances between beneficial and harmful bacteria affect the differentiation of CD4+ T cells, leading to the development of asthma. Correcting bacterial imbalances using probiotics reportedly improves asthma symptoms. In this review, we investigate the effects of crosstalk between the microbiota and CD4+ T cells on the development of asthma.
Collapse
Affiliation(s)
| | - Heung Kyu Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea;
| |
Collapse
|
11
|
Su Y, Geng L, Ma Y, Yu X, Kang Z, Kang Z. Identification of circular RNA circVPS33A as a modulator in house dust mite-induced injury in human bronchial epithelial cells. Exp Lung Res 2021; 47:368-381. [PMID: 34511010 DOI: 10.1080/01902148.2021.1974125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND House dust mite has been well documented as a major source of allergen in asthma. Circular RNAs (circRNAs) vacuolar protein sorting 33A (circVPS33A, circ_0000455) is overexpressed in a murine asthma model. Herein, we sought to identify its critical action in Dermatophagoides pteronyssinus peptidase 1 (Der p1)-induced dysfunction of BEAS-2B cells. METHODS The levels of circVPS33A, microRNA (miR)-192-5p, and high-mobility group box 1 (HMGB1) were assessed by quantitative real-time PCR (qRT-PCR) or western blot. Actinomycin D treatment and Ribonuclease R (RNase R) assay were used to characterize circVPS33A. Cell viability, proliferation, apoptosis, migration, and invasion were evaluated by Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), flow cytometry, and transwell assays, respectively. Enzyme-linked immunosorbent assay (ELISA) was used to quantify interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and IL-6. Direct relationship between miR-192-5p and circVPS33A or HMGB1 was verified by dual-luciferase reporter and RNA immunoprecipitation (RIP) assay. RESULTS CircVPS33A was highly expressed in asthma plasma and Der p1-treated BEAS-2B cells. Knocking down circVPS33A suppressed Der p1-induced injury in BEAS-2B cells. CircVPS33A targeted miR-192-5p. MiR-192-5p directly targeted HMGB1, and miR-192-5p-mediated repression of HMGB1 alleviated Der p1-driven cell injury. Furthermore, circVPS33A modulated HMGB1 expression through miR-192-5p. CONCLUSION Our findings demonstrated that circVPS33A regulated house dust mite-induced injury in human bronchial epithelial cells at least partially depending on the modulation of the miR-192-5p/HMGB1 axis.
Collapse
Affiliation(s)
- Yinghao Su
- Department of Respiratory and Critical Care Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Limei Geng
- Department of Respiratory and Critical Care Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Yunlei Ma
- Department of Respiratory and Critical Care Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Xiangyan Yu
- Department of Respiratory and Critical Care Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Ziyi Kang
- Department of Respiratory and Critical Care Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| | - Zenglu Kang
- Department of Respiratory and Critical Care Medicine, Hebei Provincial Hospital of Traditional Chinese Medicine, Shijiazhuang, Hebei Province, China
| |
Collapse
|
12
|
Ren FJ, Yao Y, Cai XY, Fang GY. Emerging Role of MiR-192-5p in Human Diseases. Front Pharmacol 2021; 12:614068. [PMID: 33708127 PMCID: PMC7940509 DOI: 10.3389/fphar.2021.614068] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/19/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are a type of small non-coding RNAs that play an essential role in numerous biological processes by regulating the post-transcriptional expression of target genes. Recent studies have demonstrated that miR-192-5p, a member of the miR-192 family, partakes in several human diseases, especially various cancers, including cancers of the lung, liver, and breast. Importantly, the levels of miR-192-5p are abundant in biofluids, including the serum and urine, and the exosomal levels of miR-192-5p in circulation can aid in the diagnosis and prognosis of various diseases, such as chronic hepatitis B (CHB) infection disease. Notably, recent studies suggest that miR-192-5p is regulated by long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). However, there are no comprehensive overviews on the role of miR-192-5p in human diseases. This review discusses the significant studies on the role of miR-192-5p in various human diseases, with special emphasis on the diseases of the respiratory and digestive systems.
Collapse
Affiliation(s)
- Fu-Jia Ren
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women's Hospital School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Yu Cai
- Department of Pharmacy, Hangzhou First People's Hospital, Hangzhou, China
| | - Guo-Ying Fang
- Department of Pharmacy, Hangzhou Women's Hospital (Hangzhou Maternity and Child Health Care Hospital), Hangzhou, China
| |
Collapse
|
13
|
Xu L, Yi M, Tan Y, Yi Z, Zhang Y. A comprehensive analysis of microRNAs as diagnostic biomarkers for asthma. Ther Adv Respir Dis 2020; 14:1753466620981863. [PMID: 33357010 PMCID: PMC7768876 DOI: 10.1177/1753466620981863] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background: It is unclear whether microRNAs could be a potential diagnostic biomarker for asthma or not. The objective of this study is to figure out the diagnostic value of microRNAs in asthma. Methods: Literature retrieval, screening of publications, specific data extraction, and quality evaluation were conducted according to the standard criteria. Stata 14.0 software was used to analyze the diagnostic value of microRNA for asthma, including the combined sensitivity (Sen), specificity (Spe), the area under the curve (AUC), positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR). Results: A total of 72 studies, containing 4143 cases and 2188 controls, were included for this comprehensive analysis. None of the included publications were rated low in quality. We summarized that, compared with controls, more than 100 miRNAs were reported differently expressed in asthma, although the expression trends were inconsistent. Besides, there were five studies among these 72 articles that applied the diagnostic evaluation of microRNAs in asthma. We found that the pooled Sen, Spe, and AUC for the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p in asthma were 0.87 (95%CI: 0.72–0.95), 0.84 (95%CI: 0.74–0.91), and 0.93 (95%CI: 0.89–0.94) individually, and the PLR, NLR, and DOR were 5.5 (95%CI: 3.1–9.7), 0.15 (95%CI: 0.07–0.36), and 35 (95%CI: 10–127) in asthma, respectively. In terms of subgroup analyses, we found that the Sen for these combination miRNAs from serum was higher than that in plasma, while the Spe in plasma worked better than that in serum. Furthermore, compared with children, the combination of above miRNAs from adults had higher Spe and similar Sen. Conclusions: From our analysis, the combination of miR-185-5p, miR-155, let-7a, miR-21, miR-320a, miR-1246, miR-144-5p, and miR-1165-3p from peripheral blood could potentially act as a diagnostic biomarker for asthma. The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Li Xu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China.,School of Life Sciences, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Minhan Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yun Tan
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Zixun Yi
- School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yuan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
14
|
Liu T, Sun Y, Bai W. The Role of Epigenetics in the Chronic Sinusitis with Nasal Polyp. Curr Allergy Asthma Rep 2020; 21:1. [PMID: 33236242 DOI: 10.1007/s11882-020-00976-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis with nasal polyps (CRSwNP) is a common and heterogeneous inflammatory disease. The underlying epigenetic mechanisms and treatment of CRSwNP are partially understood. Of the different epigenetic changes in CRSwNP, histone deacetylases (HDACs), methylation of DNA, and the levels of miRNA are widely studied. Here, we review the human studies of epigenetic mechanisms in CRSwNP. RECENT FINDINGS The promoters of COL18A1, PTGES, PLAT, and TSLP genes are hypermethylated in CRSwNP compared with those of controls, while the promoters of PGDS, ALOX5AP, LTB4R, IL-8, and FZD5 genes are hypomethylated in CRSwNP. Promoter hypermethylation suppresses the gene expression, while promoter hypomethylation increases the gene expression. Studies have shown the elevation in the levels of HDAC2, HDAC4, and H3K4me3 in CRSwNP. In CRSwNP patients, there is also an upregulation of certain miRNAs including miR-125b, miR-155, miR-19a, miR-142-3p, and miR-21 and downregulation of miR-4492. Epigenetics takes part in the immunology of CRSwNP and may give rise to endotypes of CRSwNP. Both HDAC2 and the miRNA including miR-18a, miR-124a, and miR-142-3p may take function in the regulation of glucocorticoid resistance. HDAC inhibitors and KDM2B have shown effectiveness in decreasing nasal polyp, and DNA methyltransferase (DNMT) or HDAC inhibitors may have a potential efficacy for the treatment of CRSwNP. Recent advances in the epigenetics of CRSwNP have led to the identification of several potential therapeutic targets for this disease. The use of epigenetics may provide novel and effective biomarkers and therapies for the treatment of nasal polyp.
Collapse
Affiliation(s)
- Tiancong Liu
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yang Sun
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Weiliang Bai
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
15
|
Tittarelli A, Navarrete M, Lizana M, Hofmann-Vega F, Salazar-Onfray F. Hypoxic Melanoma Cells Deliver microRNAs to Dendritic Cells and Cytotoxic T Lymphocytes through Connexin-43 Channels. Int J Mol Sci 2020; 21:ijms21207567. [PMID: 33066331 PMCID: PMC7589225 DOI: 10.3390/ijms21207567] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/05/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Alterations in microRNA (miRNA) profiles, induced by tumor microenvironment stressors, like hypoxia, allow cancer cells to acquire immune-resistance phenotypes. Indeed, hypoxia-induced miRNAs have been implicated in cancer progression through numerous cancer cell non-autonomous mechanisms, including the direct transfer of hypoxia-responsive miRNA from cancer to immune cells via extracellular vesicles. Connexin-43 (Cx43)-constituted gap junctions (GJs) have also been involved in miRNA intercellular mobilization, in other biological processes. In this report, we aimed to evaluate the involvement of Cx43-GJs in the shift of miRNAs induced by hypoxia, from hypoxic melanoma cells to dendritic cells and melanoma-specific cytotoxic T lymphocytes (CTLs). Using qRT-PCR arrays, we identified that miR-192-5p was strongly induced in hypoxic melanoma cells. Immune cells acquired this miRNA after co-culture with hypoxic melanoma cells. The transfer of miR-192-5p was inhibited when hypoxic melanoma cells expressed a dominant negative Cx43 mutant or when Cx43 expression was silenced using specific short-hairpin RNAs. Interestingly, miR-192-5p levels on CTLs after co-culture with hypoxic melanoma cells were inversely correlated with the cytotoxic activity of T cells and with ZEB2 mRNA expression, a validated immune-related target of miR-192-5p, which is also observed in vivo. Altogether, our data suggest that hypoxic melanoma cells may suppress CTLs cytotoxic activity by transferring hypoxia-induced miR-192-5p through a Cx43-GJs driven mechanism, constituting a resistance strategy for immunological tumor escape.
Collapse
Affiliation(s)
- Andrés Tittarelli
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana (UTEM), Santiago 8940577, Chile
- Correspondence: ; Tel.: +56-2-2787-7903
| | - Mariela Navarrete
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Marcelo Lizana
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
| | - Francisca Hofmann-Vega
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
| | - Flavio Salazar-Onfray
- Disciplinary Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile; (M.N.); (M.L.); (F.H.-V.); (F.S.-O.)
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| |
Collapse
|
16
|
Ghafouri-Fard S, Shoorei H, Taheri M, Sanak M. Emerging role of non-coding RNAs in allergic disorders. Biomed Pharmacother 2020; 130:110615. [PMID: 32777705 DOI: 10.1016/j.biopha.2020.110615] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/06/2023] Open
Abstract
RNA transcripts that not undergo translation into polypeptides recently came into focus of research. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs) and circular RNAs (circRNAs) comprise the most important groups of these transcripts. LncRNAs have a length over 200 nucleotides and like mRNAs, have regulated transcription in a tissue specific manner. Biogenesis and function of lncRNAs is related to cell differentiation, response to stimuli and regulation of immune responses. LncRNAs can interact with both miRNAs and mRNAs. MiRNAs are characterized by a length of 22-24 nucleotides. MiRNAs regulate expression of genes at the post-transcriptional level. LncRNAs together with miRNAs are considered as regulators of the immune system. Alterations in their biogenesis is an important mechanism in the development immune related disorders. CircRNAs are products of aberrant maturation of protein-coding transcripts in a process of back-splicing, in which a single strand RNA molecule attains a closed circle shape. Despite a low expression, some circRNA were found to titrate miRNAs and interfere with maturation of legitimate protein-coding transcripts. We summarize the current knowledge on the role of non-coding transcripts in allergic disorders: asthma, atopic dermatitis, allergic rhinitis and urticaria. The reviewed data suggest lncRNA and miRNAs as therapeutic targets and biomarkers of allergic disorders.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
17
|
Tan BWQ, Sim WL, Cheong JK, Kuan WS, Tran T, Lim HF. MicroRNAs in chronic airway diseases: Clinical correlation and translational applications. Pharmacol Res 2020; 160:105045. [PMID: 32590100 DOI: 10.1016/j.phrs.2020.105045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are short single-stranded RNAs that have pivotal roles in disease pathophysiology through transcriptional and translational modulation of important genes. It has been implicated in the development of many diseases, such as stroke, cardiovascular conditions, cancers and inflammatory airway diseases. There is recent evidence that miRNAs play important roles in the pathogenesis of asthma and chronic obstructive pulmonary disease (COPD), and could help to distinguish between T2-low (non-eosinophilic, steroid-insensitive) versus T2-high (eosinophilic, steroid-sensitive) disease endotypes. As these are the two most prevalent chronic respiratory diseases globally, with rising disease burden, miRNA research might lead to the development of new diagnostic and therapeutic targets. Research involving miRNAs in airway disease is challenging because: (i) asthma and COPD are heterogeneous inflammatory airway diseases; there are overlapping but distinct inter- and intra-disease differences in the immunological pathophysiology, (ii) there exists more than 2000 known miRNAs and a single miRNA can regulate multiple targets, (iii) differential effects of miRNAs could be present in different cellular subtypes and tissues, and (iv) dysregulated miRNA expression might be a direct consequence of an indirect effect of airway disease onset or progression. As miRNAs are actively secreted in fluids and remain relatively stable, they have the potential for biomarker development and therapeutic targets. In this review, we summarize the preclinical data on potential miRNA biomarkers that mediate different pathophysiological mechanisms in airway disease. We discuss the framework for biomarker development using miRNA and highlight the need for careful patient characterization and endotyping in the screening and validation cohorts, profiling both airway and blood samples to determine the biological fluids of choice in different disease states or severity, and adopting an untargeted approach. Collaboration between the various stakeholders - pharmaceutical companies, laboratory professionals and clinician-scientists is crucial to reduce the difficulties and cost required to bring miRNA research into the translational stage for airway diseases.
Collapse
Affiliation(s)
- Bryce W Q Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wei Liang Sim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jit Kong Cheong
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Win Sen Kuan
- Department of Emergency Medicine, National University Hospital, National University Health System, Singapore
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Hui Fang Lim
- Division of Respiratory & Critical Care Medicine, Department of Medicine, National University Hospital, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
18
|
Taka S, Tzani-Tzanopoulou P, Wanstall H, Papadopoulos NG. MicroRNAs in Asthma and Respiratory Infections: Identifying Common Pathways. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2020; 12:4-23. [PMID: 31743961 PMCID: PMC6875476 DOI: 10.4168/aair.2020.12.1.4] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Abstract
MicroRNAs (miRs) are single-stranded RNAs of 18-25 nucleotides. These molecules regulate gene expression at the post-transcriptional level; several of these are differentially expressed in asthma as well as in viral acute respiratory infections (ARIs), the main triggers of acute asthma exacerbations. In recent years, miRs have been studied in order to discover drug targets as well as biomarkers for diagnosis, disease severity and prognosis. We describe recent findings on miR expression and function in asthma and their role in the regulation of viral ARIs, according to cell tissue specificity and asthma severity. By combining the above information, we identify miRs that may be important in virus-induced asthma exacerbations. This is the first attempt to link miR profiles of asthmatic patients and ARI-induced miRs, addressing the question of whether there might be a specific miR deficit in asthmatic subjects that make them more susceptible and/or reactive to infection.
Collapse
Affiliation(s)
- Styliani Taka
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Panayiota Tzani-Tzanopoulou
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
| | - Hannah Wanstall
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Nikolaos G Papadopoulos
- Allergy and Clinical Immunology Unit, 2nd Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece.,Division of Infection, Inflammation and Respiratory Medicine, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
19
|
Lou L, Tian M, Chang J, Li F, Zhang G. MiRNA-192-5p attenuates airway remodeling and autophagy in asthma by targeting MMP-16 and ATG7. Biomed Pharmacother 2019; 122:109692. [PMID: 31918268 DOI: 10.1016/j.biopha.2019.109692] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 01/21/2023] Open
Abstract
Asthma is a chronic lung inflammatory disease with high incidence. MicroRNA-192-5p (miR-192-5p) was down-regulated in asthmatics. However, the role of miR-192-5p in asthma is still unclear. In current study, in vitro, the overexpression of miR-192-5p, matrix metalloproteinase (MMP)-16 and autophagy related 7 (ATG7) was conducted in airway smooth muscle cells (ASMCs). We found that miR-192-5p suppressed cell proliferation, and decreased MMP-16 and ATG7 expression. MMP-16 and ATG7 promoted cell proliferation, and further alleviated the down-regulation of miR-192-5p on proliferation of ASMCs. in vivo, miR-192-5p was down-regulated in asthma mice, and involved in improvement of asthma mice. MiR-192-5p was demonstrated to alleviate inflammation in asthma mice, including decreasing the level of ovalbumin (OVA)-specific IgE, interleukin (IL)-4, IL-5, IL-13, iNOS and COX-2. Moreover, the attenuation of airway remodeling induced by miR-192-5p in asthma mice were expressed by the reduction of fibroblast growth factor-23 (FGF-23) level, decrease in concentrations of MMP-2 and MMP-9 as well as down-regulation of collagen I deposition. Further, miR-192-5p also caused the suppression of autophagy in asthma mice, exhibiting a decrease in LC3II/I, beclin-1 and ATG7, and an increase in p62. Importantly, MMP-16 and ATG7 were confirmed to be targets of miR-192-5p. Therefore, our results indicate that miRNA-192-5p may attenuate airway remodeling and autophagy in asthma via targeting MMP-16 and ATG7.
Collapse
Affiliation(s)
- Lili Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mengyuan Tian
- Department of Pathology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, Henan 450008, China
| | - Jingxia Chang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fangfang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Guojun Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
20
|
Gong F, Zheng T, Zhou P. T Follicular Helper Cell Subsets and the Associated Cytokine IL-21 in the Pathogenesis and Therapy of Asthma. Front Immunol 2019; 10:2918. [PMID: 31921177 PMCID: PMC6923700 DOI: 10.3389/fimmu.2019.02918] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
For many decades, T helper 2 (TH2) cells have been considered to predominantly regulate the pathogenic manifestations of allergic asthma, such as IgE-mediated sensitization, airway hyperresponsiveness, and eosinophil infiltration. However, recent discoveries have significantly shifted our understanding of asthma from a simple TH2 cell-dependent disease to a heterogeneous disease regulated by multiple T cell subsets, including T follicular helper (TFH) cells. TFH cells, which are a specialized cell population that provides help to B cells, have attracted intensive attention in the past decade because of their crucial role in regulating antibody response in a broad range of diseases. In particular, TFH cells are essential for IgE antibody class-switching. In this review, we summarize the recent progress regarding the role of TFH cells and their signature cytokine interleukin (IL)-21 in asthma from mouse studies and clinical reports. We further discuss future therapeutic strategies to treat asthma by targeting TFH cells and IL-21.
Collapse
Affiliation(s)
- Fang Gong
- Department of Laboratory Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Ting Zheng
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.,Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Pengcheng Zhou
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
21
|
Mousavi SR, Ahmadi A, Jamalkandi SA, Salimian J. Involvement of microRNAs in physiological and pathological processes in asthma. J Cell Physiol 2019; 234:21547-21559. [PMID: 31099080 DOI: 10.1002/jcp.28781] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/31/2022]
Abstract
Asthma is the most common respiratory disease accompanied by lung inflammatory disorders. The main symptoms are airway obstruction, chronic inflammation due to mast cell and eosinophil activity, and the disturbance of immune responses mostly mediated by the Th2 response. Genetic background and environmental factors also contribute to the pathogenesis of asthma. Today, microRNAs (miRNAs) are known as remarkable regulators of gene expression. As a small group of noncoding single-strand RNAs, mature miRNAs (~21 nucleotides) modulate the gene expression by targeting complement RNAs at both transcriptional and posttranscriptional levels. The role of miRNAs in the pathogenesis of many diseases such as allergies, asthma, and autoimmunity has been vastly studied. This review provides a thorough research update on the role of miRNAs in the pathogenesis of asthma and their probable role as diagnostic and/or therapeutic biomarkers.
Collapse
Affiliation(s)
- Seyed Reza Mousavi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh Jamalkandi
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
He B, Chang Y, Yang C, Zhang Z, Xu G, Feng X, Zhuang L. Adenylate cyclase 7 regulated by miR-192 promotes ATRA-induced differentiation of acute promyelocytic leukemia cells. Biochem Biophys Res Commun 2018; 506:543-547. [PMID: 30366671 DOI: 10.1016/j.bbrc.2018.10.125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022]
Abstract
Adenylate cyclase 7 (AC7) has been reported to participate in various biological processes during cancer progression. However, the roles of AC7 in all-trans retinoic acid (ATRA)-induced differentiation of acute promyelocytic leukemia (APL) cells are still unknown. In this study, firstly, our results showed that AC7 affected intracellular cAMP level and influenced ATRA-induced differentiation of APL cells. Secondly, we revealed that miR-192 could directly target AC7 expression and knockdown of miR-192 promoted ATRA-induced APL cell differentiation by regulating AC7 expression. Furthermore, we found that AC7 expression was lower in patients with relapsed APL than that in patients with newly diagnosed APL, while miR-192 expression was relatively higher in patients with relapsed APL. Taken together, our results show that miR-192-mediated AC7 could play important roles in differentiation of APL cells, AC7 and miR-192 might be new biomarkers and therapeutic targets for patients with relapsed APL.
Collapse
Affiliation(s)
- Bing He
- Department of General Surgery, The First People's Hospital of Tianmen City, Tianmen, 431700, China
| | - Yanyan Chang
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Chao Yang
- Department of Infectious Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Zhanglin Zhang
- Department of Laboratorial Examination, The First Affiliated Hospital of Nanchang University, 330006, Nanchang, China
| | - Guiping Xu
- Transfusion Department, The Second Affiliated Hospital of Chongqing Medical University, 400010, Chongqing, China
| | - Xianqi Feng
- Department of Haematology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Likun Zhuang
- Institute of Transplantation Science, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|