1
|
Molot J, Sears M, Anisman H. Multiple Chemical Sensitivity: It's time to catch up to the science. Neurosci Biobehav Rev 2023; 151:105227. [PMID: 37172924 DOI: 10.1016/j.neubiorev.2023.105227] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 05/06/2023] [Indexed: 05/15/2023]
Abstract
Multiple chemical sensitivity (MCS) is a complex medical condition associated with low dose chemical exposures. MCS is characterized by diverse features and common comorbidities, including fibromyalgia, cough hypersensitivity, asthma, and migraine, and stress/anxiety, with which the syndrome shares numerous neurobiological processes and altered functioning within diverse brain regions. Predictive factors linked to MCS comprise genetic influences, gene-environment interactions, oxidative stress, systemic inflammation, cell dysfunction, and psychosocial influences. The development of MCS may be attributed to the sensitization of transient receptor potential (TRP) receptors, notably TRPV1 and TRPA1. Capsaicin inhalation challenge studies demonstrated that TRPV1 sensitization is manifested in MCS, and functional brain imaging studies revealed that TRPV1 and TRPA1 agonists promote brain-region specific neuronal variations. Unfortunately, MCS has often been inappropriately viewed as stemming exclusively from psychological disturbances, which has fostered patients being stigmatized and ostracized, and often being denied accommodation for their disability. Evidence-based education is essential to provide appropriate support and advocacy. Greater recognition of receptor-mediated biological mechanisms should be incorporated in laws, and regulation of environmental exposures.
Collapse
Affiliation(s)
- John Molot
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Margaret Sears
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| | - Hymie Anisman
- Family Medicine, University of Ottawa Faculty of Medicine, Ottawa ON Canada; Ottawa Hospital Research Institute, Ottawa, ON, Canada; Department of Neuroscience, Carleton University, Ottawa Canada.
| |
Collapse
|
2
|
Allais L, De Smet R, Verschuere S, Talavera K, Cuvelier CA, Maes T. Transient Receptor Potential Channels in Intestinal Inflammation: What Is the Impact of Cigarette Smoking? Pathobiology 2016; 84:1-15. [DOI: 10.1159/000446568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 05/02/2016] [Indexed: 11/19/2022] Open
|
3
|
Choi YJ, Kim N, Kim J, Lee DH, Park JH, Jung HC. Upregulation of Vanilloid Receptor-1 in Functional Dyspepsia With or Without Helicobacter pylori Infection. Medicine (Baltimore) 2016; 95:e3410. [PMID: 27175641 PMCID: PMC4902483 DOI: 10.1097/md.0000000000003410] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The etiological basis of functional dyspepsia (FD) is incompletely understood. The aim of this study was to evaluate the involvement of nociceptor-related genes and Helicobacter pylori (HP) in the pathogenesis of FD. The expression of nociceptor-related genes was measured in gastric cell lines that were co-cultured with HP. FD patients (n = 117) and controls (n = 55) were enrolled from a tertiary hospital gastroenterology clinic. Expression of the genes nerve growth factor (NGF), glial cell line-derived neurotrophic factor (GDNF), and transient receptor potential cation channel subfamily V member 1 (TRPV1) in the gastric mucosa were detected by reverse transcription polymerase chain reaction (RT-PCR), and immunohistochemical staining of TRPV1 was analyzed. These measurements were repeated after 1 year. TRPV1, GDNF, and NGF expression was elevated in gastric cell lines co-cultured with HP. TRPV1 immunostaining was stronger in HP-positive than HP-negative subjects. The FD group showed higher expression levels of TRPV1, GDNF, and NGF and increased TRPV1 immunostaining compared with those of the control group (all P < 0.05). Among 61 subjects who were followed up at 1 year, controls with successful HP eradication and patients whose symptoms had improved both showed significant reductions in the expression of TRPV1 and NGF (all P < 0.05) compared with controls without HP eradication and patients whose symptoms had not improved, respectively. The expression of NGF, GDNF, and TRPV1 may be associated with the pathogenesis of FD. Since HP infection may induce the increased expression of these genes, anti-HP therapy could be beneficial for HP-positive patients with FD.
Collapse
Affiliation(s)
- Yoon Jin Choi
- From the Department of Internal Medicine and Seoul National University Bundang Hospital, Seongnam, Gyeonggi-do (YJC, NK, DHL); and Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul (NK, JK, DHL, JHP, HCJ), South Korea
| | | | | | | | | | | |
Collapse
|
4
|
Han H, Yang J, Fei S, Liu Z, Zhu S, Dong Q, Gao Z, Wang S, Zhang J. Protective effect of carbachol postconditioning on hypoxia/reoxygenation-induced injury in human gastric epithelial cells. Life Sci 2016; 144:234-42. [DOI: 10.1016/j.lfs.2015.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/22/2015] [Accepted: 11/28/2015] [Indexed: 02/07/2023]
|
5
|
Liu ZB, Fei SJ, Zhu SP, Zhu JZ, Han HX, Dong QJ, Zhang JF. Protection of ghrelin postconditioning on hypoxia/reoxygenation in gastric epithelial cells. World J Gastroenterol 2012; 18:5377-88. [PMID: 23082054 PMCID: PMC3471106 DOI: 10.3748/wjg.v18.i38.5377] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 01/16/2012] [Accepted: 04/13/2012] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the protective effect and mechanisms of ghrelin postconditioning against hypoxia/reoxygenation (H/R)-induced injury in human gastric epithelial cells.
METHODS: The model of H/R injury was established in gastric epithelial cell line (GES-1) human gastric epithelial cells. Cells were divided into seven groups: normal control group (N); H/R postconditioning group; DMSO postconditioning group (DM); ghrelin postconditioning group (GH); D-Lys3-GHRP-6 + ghrelin postconditioning group (D + GH); capsazepine + ghrelin postconditioning group (C + GH); and LY294002 + ghrelin postconditioning group (L + GH). 3-(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was used to detect GES-1 cell viability. Hoechst 33258 fluorochrome staining and flow cytometry were conducted to determine apoptosis of GES-1 cells. Spectrophotometry was performed to determine release of lactate dehydrogenate (LDH). Protein expression of Bcl-2, Bax, Akt, and glycogen synthase kinase (GSK)-3β was determined by western blotting. Expression of vanilloid receptor subtype 1 (VR1), Akt and GSK-3β was observed by immunocytochemistry.
RESULTS: Compared with the H/R group, cell viability of the GH group was significantly increased in a dose-dependent manner (55.9% ± 10.0% vs 69.6% ± 9.6%, 71.9% ± 17.4%, and 76.3% ± 13.3%). Compared with the H/R group, the percentage of apoptotic cells in the GH group significantly decreased (12.38% ± 1.51% vs 6.88% ± 0.87%). Compared with the GH group, the percentage of apoptotic cells in the D + GH group, C + GH group and L + GH groups significantly increased (11.70% ± 0.88%, 11.93% ± 0.96%, 10.20% ± 1.05% vs 6.88% ± 0.87%). There were no significant differences in the percentage of apoptotic cells between the H/R and DM groups (12.38% ± 1.51% vs13.00% ± 1.13%). There was a significant decrease in LDH release following ghrelin postconditioning compared with the H/R group (561.58 ± 64.01 U/L vs 1062.45 ± 105.29 U/L). There was a significant increase in LDH release in the D + GH, C + GH and L + GH groups compared with the GH group (816.89 ± 94.87 U/L, 870.95 ± 64.06 U/L, 838.62 ± 118.45 U/L vs 561.58 ± 64.01 U/L). There were no significant differences in LDH release between the H/R and DM groups (1062.45 ± 105.29 U/L vs 1017.65 ± 68.90 U/L). Compared with the H/R group, expression of Bcl-2 and Akt increased in the GH group, whereas expression of Bax and GSK-3β decreased. Compared with the GH group, expression of Bcl-2 decreased and Bax increased in the D + GH, C + GH and L + GH groups, and Akt decreased and GSK-3β increased in the L + GH group. The H/R group also upregulated expression of VR1 and GSK-3β and downregulated Akt. The number of VR1-positive and Akt-positive cells in the GH group significantly increased, whereas the number of GSK-3β-positive cells significantly decreased. These effects of ghrelin were reversed by capsazepine and LY294002.
CONCLUSION: Ghrelin postconditioning protected against H/R-induced injury in human gastric epithelial cells, which indicated that this protection might be associated with GHS-R, VR1 and the PI3K/Akt signaling pathway.
Collapse
|
6
|
Holzer P. TRP channels in the digestive system. Curr Pharm Biotechnol 2011; 12:24-34. [PMID: 20932260 DOI: 10.2174/138920111793937862] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 05/09/2010] [Indexed: 12/26/2022]
Abstract
Several of the 28 mammalian transient receptor potential (TRP) channel subunits are expressed throughout the alimentary canal where they play important roles in taste, chemo- and mechanosensation, thermoregulation, pain and hyperalgesia, mucosal function and homeostasis, control of motility by neurons, interstitial cells of Cajal and muscle cells, and vascular function. While the implications of some TRP channels, notably TRPA1, TRPC4, TRPM5, TRPM6, TRPM7, TRPV1, TRPV4, and TRPV6, have been investigated in much detail, the understanding of other TRP channels in their relevance to digestive function lags behind. The polymodal chemo- and mechanosensory function of TRPA1, TRPM5, TRPV1 and TRPV4 is particularly relevant to the alimentary canal whose digestive and absorptive function depends on the surveillance and integration of many chemical and physical stimuli. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 appear to be essential for the absorption of Ca(2+) and Mg(2+), respectively, while TRPM7 appears to contribute to the pacemaker activity of the interstitial cells of Cajal, and TRPC4 transduces smooth muscle contraction evoked by muscarinic acetylcholine receptor activation. The implication of some TRP channels in pathological processes has raised enormous interest in exploiting them as a therapeutic target. This is particularly true for TRPV1, TRPV4 and TRPA1, which may be targeted for the treatment of several conditions of chronic abdominal pain. Consequently, blockers of these TRP channels have been developed, and their clinical usefulness has yet to be established.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitátsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
7
|
Holzer P. Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system. Pharmacol Ther 2011; 131:142-70. [PMID: 21420431 PMCID: PMC3107431 DOI: 10.1016/j.pharmthera.2011.03.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 12/12/2022]
Abstract
Approximately 20 of the 30 mammalian transient receptor potential (TRP) channel subunits are expressed by specific neurons and cells within the alimentary canal. They subserve important roles in taste, chemesthesis, mechanosensation, pain and hyperalgesia and contribute to the regulation of gastrointestinal motility, absorptive and secretory processes, blood flow, and mucosal homeostasis. In a cellular perspective, TRP channels operate either as primary detectors of chemical and physical stimuli, as secondary transducers of ionotropic or metabotropic receptors, or as ion transport channels. The polymodal sensory function of TRPA1, TRPM5, TRPM8, TRPP2, TRPV1, TRPV3 and TRPV4 enables the digestive system to survey its physical and chemical environment, which is relevant to all processes of digestion. TRPV5 and TRPV6 as well as TRPM6 and TRPM7 contribute to the absorption of Ca²⁺ and Mg²⁺, respectively. TRPM7 participates in intestinal pacemaker activity, and TRPC4 transduces muscarinic acetylcholine receptor activation to smooth muscle contraction. Changes in TRP channel expression or function are associated with a variety of diseases/disorders of the digestive system, notably gastro-esophageal reflux disease, inflammatory bowel disease, pain and hyperalgesia in heartburn, functional dyspepsia and irritable bowel syndrome, cholera, hypomagnesemia with secondary hypocalcemia, infantile hypertrophic pyloric stenosis, esophageal, gastrointestinal and pancreatic cancer, and polycystic liver disease. These implications identify TRP channels as promising drug targets for the management of a number of gastrointestinal pathologies. As a result, major efforts are put into the development of selective TRP channel agonists and antagonists and the assessment of their therapeutic potential.
Collapse
Affiliation(s)
- Peter Holzer
- Research Unit of Translational Neurogastroenterology, Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitätsplatz 4, A-8010 Graz, Austria.
| |
Collapse
|
8
|
Kidd M, Hauso Ø, Drozdov I, Gustafsson BI, Modlin IM. Delineation of the chemomechanosensory regulation of gastrin secretion using pure rodent G cells. Gastroenterology 2009; 137:231-41, 241.e1-10. [PMID: 19208342 DOI: 10.1053/j.gastro.2009.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 12/12/2008] [Accepted: 01/08/2009] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Gastrin is a key regulator of gastric acid secretion. We aimed to isolate pure G cells to identify the mechanistic basis of luminal- and strain-mediated regulation. METHODS Using gradient centrifugation and fluorescence-activated cell sorting, rat G cells were prepared and luminal, neural, hormonal, and mechanical activation of secretion and signaling pathways studied. RESULTS Pure G-cell preparations (>97%) were isolated. Reverse-transcription polymerase chain reaction identified neural, hormonal, bacterial, and luminal G protein-coupled receptors, and immunostaining visualized specific sweet/bitter receptors and the tastant-associated G protein alpha-gustducin. Gastrin release was stimulated by forskolin (adenosine 3',5'-cyclic monophosphate [cAMP] inducer, 10 micromol/L; >3-fold), potentiated by 3-isobutyl-1-methylxanthine (IBMX; phosphodiesterase type 5 inhibitor and adenosine antagonist, 10 micromol/L) and phorbol myristate acetate (phorbol ester, 10 micromol/L), and inhibited by H-89 (protein kinase A inhibitor, 10 micromol/L), PD98059 (MEK1 inhibitor, 0.1 micromol/L), and wortmannin (phosphatidylinositol 3-kinase inhibitor, 1 nmol/L). Gastrin release was stimulated by neuronal G protein-coupled receptor ligands, pituitary adenylate cyclase-activating protein (20 pmol/L, >8-fold) and bombesin (0.1 micromol/L, 8-fold) through cAMP signaling. The tastants sucralose, glucose, caffeine, denatonium, and the vanilloid receptor activator capsaicin all stimulated secretion (>3-fold), as did bacterial lipopolysaccharides Salmonella enteritidis (0.24 nmol/L, 5-fold) greater than Helicobacter pylori (0.57 micromol/L, 3-fold). Secretion was associated with elevated cAMP levels (approximately 2-fold) and could be inhibited by H-89 and PD98059 and potentiated by IBMX and cholera toxin (250 microg/mL). Bacterially mediated secretion also involved activation of nuclear factor kappaB and the c-Jun-N-terminal kinase pathway. Mechanical strain stimulated (2-fold to 8-fold) gastrin release, and decreasing pH from 7.4 to 5.5 inhibited release. The adenosine receptor 2B antagonist MRS1754 inhibited mechanically induced gastrin release. CONCLUSIONS G cells are luminal sampling chemomechanosensory cells whose secretion is regulated by neural, hormonal, luminal, and mechanical factors through protein kinase A activation, cAMP signaling, and mitogen-activated protein kinase phosphorylation.
Collapse
Affiliation(s)
- Mark Kidd
- Gastrointestinal Pathobiology Research Group, Department of Gastroenterology, Yale University School of Medicine, New Haven, Connecticut 06520-8062, USA
| | | | | | | | | |
Collapse
|
9
|
The protective effect of genistein postconditioning on hypoxia/reoxygenation-induced injury in human gastric epithelial cells. Acta Pharmacol Sin 2009; 30:576-81. [PMID: 19349965 DOI: 10.1038/aps.2009.29] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM The aim of this study was to investigate the protective effect of genistein postconditioning on hypoxia/reoxygenation-induced injury in human gastric epithelial cells and to begin a tentative discussion on the mechanism behind this protection. METHODS A model of hypoxia/reoxygenation-induced injury was established in the human gastric epithelial cell line (GES-1). All cells in our present study were randomly divided into five groups: a normal control group (N), a hypoxia/reoxygenation group (H/R), a genistein postconditioning group (GP), a capsazepine+genistein postconditioning group (C+GP) and a DMSO vehicle postconditioning group (DM). The methods used included MTT assays to test cell viability, flow cytometric analyses to quantify the percentage of cell apoptosis, Western blot analyses to measure the protein expression of calcitonin gene-related peptide (CGRP), Bcl-2, and Bax, and immunocytochemistry assays to detect the expression of CGRP in each group. RESULTS The MTT assays indicated that the cell viabilities of the groups were 100.0%+/-0%, 51.4%+/-4.1%, 66.7%+/-2.0%, 56.1%+/-2.8%, and 50.7%+/-2.4%, respectively. Compared with the H/R group, the viability of the GP group was significantly increased (P<0.01). Flow cytometric analysis showed that the cell apoptosis percentage of each group was 2.28%+/-0.44%, 12.17%+/-2.15%, 5.40%+/-1.22%, 10.43%+/-1.37%, and 11.02%+/-2.19%, respectively. Western blot analysis demonstrated that CGRP, Bcl-2, and Bax were expressed in normal human gastric epithelial cells. Compared with the H/R group, the GP group exhibited increased expression of CGRP and Bcl-2 and decreased expression of Bax. Immunocytochemistry assays indicated that the number of CGRP-positive cells in the GP group was significantly increased. CONCLUSION Genistein postconditioning has a protective effect on hypoxia/reoxygenation-induced injury in human gastric epithelial cells. The mechanism by which genistein exerts this protection may be via activation of cellular vanilloid receptor subtype 1, resulting in the generation of an endogenous protection substance, CGRP.
Collapse
|
10
|
Ericson A, Nur EM, Petersson F, Kechagias S. The effects of capsaicin on gastrin secretion in isolated human antral glands: before and after ingestion of red chilli. Dig Dis Sci 2009; 54:491-8. [PMID: 18668366 DOI: 10.1007/s10620-008-0400-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 06/18/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND Capsaicin is known to have regulatory effects on gastrointestinal functions via the vanilloid receptor (VR1). We reported previously that endocrine-like cells in the human antrum express VR1. AIM To identify VR1-expressing endocrine-like cells in human antral glands and to examine whether stimulation with capsaicin causes release of gastrin, somatostatin, and serotonin. Further, to investigate the effects of a chilli-rich diet. METHODS Gastroscopic biopsies were received from 11 volunteers. Seven of the 11 subjects agreed to donor gastric biopsies a second time after a 3-week chilli-rich diet containing 1.4-4.2 mg capsaicin/day. VR1-immunoreactive cells were identified by double-staining immunohistochemistry against gastrin, somatostatin, and serotonin. For the stimulation studies, we used an in vitro method where antral glands in suspension were stimulated with 0.01 mM capsaicin and physiological buffer was added to the control vials. The concentrations of secreted hormones were detected and calculated with radioimmunoassay (RIA). Results The light microscopic examination revealed that VR1 was localized in gastrin cells. The secretory studies showed an increase in release of gastrin and somatostatin compared to the control vials (P = 0.003; P = 0.013). Capsaicin-stimulation caused a consistent raise of the gastrin concentrations in the gland preparations from all subjects. A chilli-rich diet had an inhibitory effect on gastrin release upon stimulation compared to the results that were obtained before the start of the diet. CONCLUSION This study shows that capsaicin stimulates gastrin secretion from isolated human antral glands, and that a chilli-rich diet decreases this secretion.
Collapse
Affiliation(s)
- A Ericson
- Department of Experimental and Clinical Medicine, Faculty of Health Sciences, Linköping University, Linköping, Sweden.
| | | | | | | |
Collapse
|
11
|
Miao X, Liu G, Xu X, Xie C, Sun F, Yang Y, Zhang T, Hua S, Fan W, Li Q, Huang S, Wang Q, Liu G, Zhong D. High expression of vanilloid receptor-1 is associated with better prognosis of patients with hepatocellular carcinoma. ACTA ACUST UNITED AC 2008; 186:25-32. [PMID: 18786439 DOI: 10.1016/j.cancergencyto.2008.05.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Revised: 05/07/2008] [Accepted: 05/19/2008] [Indexed: 01/10/2023]
Abstract
The vanilloid receptor-1 (VR1) is a ligand-gated, nonselective cation channel expressed predominantly by sensory neurons, but is also involved in carcinogenesis. To elucidate its role in hepatocarcinogenesis, we analyzed the expression of VR1 receptor in tumor and nontumor tissues from human hepatocellular carcinoma (HCC) samples. In situ hybridization analysis showed overexpression of VR1 mRNAs in 9/15 (60.0%) noncancer and 6/15 (40.0%) HCC samples. Immunohistochemistry of 62 HCC samples showed the expression of VR1 increased from normal liver or chronic hepatitis to cirrhosis. Marked expression of VR1 was noted in the majority [31/38 (81.6%)] of cirrhotic liver samples. In HCC, high expression of VR1 was observed in 30/62 (48.4%) cases. Clinicopathologic evaluation indicated a significant correlation between VR1 expression and histopathologic differentiation (P=0.001). Univariate analysis indicated that disease-free survival was significantly better in HCC patients with high versus those with low VR1 expression levels (P= 0.021). Our results indicate that VR1 has anti-HCC progression effects and can be potentially used as a prognostic indicator of HCC. The results suggest the potential beneficiary effects of VR1 expression on the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Xiongying Miao
- Department of Surgery, Xiangya 2nd Hospital, Central South University, Renmin Zhong Road 139, Changsha City, Hunan Province, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
The pharmacological challenge to tame the transient receptor potential vanilloid-1 (TRPV1) nocisensor. Br J Pharmacol 2008; 155:1145-62. [PMID: 18806809 DOI: 10.1038/bjp.2008.351] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The transient receptor potential vanilloid-1 (TRPV1) cation channel is a receptor that is activated by heat (>42 degrees C), acidosis (pH<6) and a variety of chemicals among which capsaicin is the best known. With these properties, TRPV1 has emerged as a polymodal nocisensor of nociceptive afferent neurones, although some non-neuronal cells and neurones in the brain also express TRPV1. The activity of TRPV1 is controlled by a multitude of regulatory mechanisms that either cause sensitization or desensitization of the channel. As many proalgesic pathways converge on TRPV1 and this nocisensor is upregulated and sensitized by inflammation and injury, TRPV1 is thought to be a central transducer of hyperalgesia and a prime target for the pharmacological control of pain. As a consequence, TRPV1 agonists causing defunctionalization of sensory neurones and a large number of TRPV1 blockers have been developed, some of which are in clinical trials. A major drawback of many TRPV1 antagonists is their potential to cause hyperthermia, and their long-term use may carry further risks because TRPV1 has important physiological functions in the peripheral and central nervous system. The challenge, therefore, is to pharmacologically differentiate between the physiological and pathological implications of TRPV1. There are several possibilities to focus therapy specifically on those TRPV1 channels that contribute to disease processes. These approaches include (i) site-specific TRPV1 antagonists, (ii) modality-specific TRPV1 antagonists, (iii) uncompetitive TRPV1 (open channel) blockers, (iv) drugs interfering with TRPV1 sensitization, (v) drugs interfering with intracellular trafficking of TRPV1 and (vi) TRPV1 agonists for local administration.
Collapse
|
13
|
Szallasi A, Cruz F, Geppetti P. TRPV1: a therapeutic target for novel analgesic drugs? Trends Mol Med 2006; 12:545-54. [PMID: 16996800 DOI: 10.1016/j.molmed.2006.09.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/15/2006] [Accepted: 09/08/2006] [Indexed: 02/03/2023]
Abstract
The vanilloid receptor TRPV1 is now recognized as a molecular integrator of painful stimuli ranging from noxious heat to endovanilloids in inflammation. Pharmacological blockade of TRPV1 represents a new strategy in pain relief. TRPV1 antagonists are expected to prevent pain by silencing receptors where pain is generated rather than stopping the propagation of pain, as most-traditional pain killers do. This hypothesis has already being tested in the clinic by administering small molecule TRPV1 antagonists (e.g. GlaxoSmithKline SB-705498) for migraine and dental pain. Paradoxically, in some murine models of chronic pain, TRPV1-deficient mice exhibit more pain-related behavior than their wild-type littermates, indicating that the understanding of TRPV1 in pain is still incomplete. Moreover, there is mounting evidence to suggest the existence of functional TRPV1 both in the brain and in various non-neuronal tissues. The biological role of these receptors remains elusive, but their tissue distribution clearly indicates that they are involved in many more functions than just pain perception. Here, we review the potential therapeutic indications and adverse effects of TRPV1 antagonists.
Collapse
Affiliation(s)
- Arpad Szallasi
- Departments of Pathology, Monmouth Medical Center, Long Branch, NJ 07740, USA.
| | | | | |
Collapse
|
14
|
Szallasi A. Small molecule vanilloid TRPV1 receptor antagonists approaching drug status: can they live up to the expectations? Naunyn Schmiedebergs Arch Pharmacol 2006; 373:273-86. [PMID: 16773387 DOI: 10.1007/s00210-006-0072-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 04/10/2006] [Indexed: 01/05/2023]
Abstract
The cloning of the transient receptor potential vanilloid type-1 (TRPV1) receptor initiated the discovery of potent small molecule antagonists, many of which are in preclinical phase or already undergoing clinical trials. While animal experiments imply a therapeutic value for these compounds as novel analgesic-antiphlogistic drugs, new findings with TRPV1 deficient (trpv1 -/-) mice signal troubles for TRPV1 antagonists as clinical research gains impetus. An emerging concept with important implications for drug development is that TRPV1 may be differentially regulated under physiological and pathological conditions. If so, it is conceivable that such TRPV1 ligands can be synthesized that specifically target TRPV1 in diseased (e.g. inflamed or neoplastic) tissues but spare TRPV1 that subserves its physiological functions in healthy organs. This review explores the current status of this field and seeks an answer to the question how these new discoveries could be factored into TRPV1 drug discovery and development.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology, Monmouth Medical Center, 300 Second Avenue, Long Branch, NJ 07740, USA.
| |
Collapse
|