1
|
Zhao LJ, Chen P, Huang L, He WQ, Tang YR, Wang R, Luo ZL, Ren JD. Heparan sulfate acts as an activator of the NLRP3 inflammasome promoting inflammatory response in the development of acute pancreatitis. J Gastroenterol 2024; 59:869-879. [PMID: 38864913 DOI: 10.1007/s00535-024-02127-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
BACKGROUND Accumulating evidence has shown that the NOD-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in the inflammatory cascades involved in the development of acute pancreatitis (AP). However, the specific agonist responsible for activating the NLRP3 inflammasome in this process has not yet been identified. The purpose of this study is to clarify whether heparan sulfate (HS) works as an NLRP3 inflammasome activator to evoke inflammatory cascades in the progression of AP. METHODS Two experimental mouse models of AP were utilized to investigate the pro-inflammatory activity of HS in the development of AP by measuring the secretion of inflammatory cytokines and the neutrophil infiltration in pancreatic tissue. The ability of HS to activate the NLRP3 inflammasome was evaluated both in vitro and in vivo. The nuclear factor kappa B (NF-κB)-mediated expression of NLRP3 inflammasome components in response to HS treatment was determined to decipher the role of HS in transcriptional priming of NLRP3 inflammasome. Furthermore, HS-triggered deubiquitination of NLRP3 was analyzed to reveal the promoting effect of HS on the NLRP3 inflammasome priming via a non-transcriptional pathway. RESULTS High plasma level of HS was observed with a positive correlation to that of inflammatory cytokines in AP mice. Administration of HS to mice resulted in an exacerbated inflammatory profile, while reducing HS production by an inhibitor of heparanase significantly attenuated inflammatory response. Pharmacological inhibition or genetic deletion of NLRP3 substantially suppressed the HS-stimulated elevation of IL-1β levels in AP mice. The in vitro data demonstrated that HS primarily serves as a priming signal for the activation of the NLRP3 inflammasome. HS possesses the ability to increase the transcriptional activity of NF-κB and TLR4/NF-κB-driven transcriptional pathway is employed for NLRP3 inflammasome priming. Moreover, HS-induced deubiquitination of NLRP3 is another pathway responsible for non-transcriptional priming of NLRP3 inflammasome. CONCLUSIONS Our current work has unveiled HS as a new activator of the NLRP3 inflammasome responsible for the secondary inflammatory cascades during the development of AP, highlighting the HS-NLRP3 pathway as a potential target for future preventive and therapeutic approaches of AP.
Collapse
Affiliation(s)
- Li-Jun Zhao
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Peng Chen
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Safety Evaluation Center, Sichuan Institute for Drug Control (Sichuan Testing Center of Medical Devices), Chengdu, 610097, China
| | - Ling Huang
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wen-Qi He
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ying-Rui Tang
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Rui Wang
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhu-Lin Luo
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610083, China.
| | - Jian-Dong Ren
- Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Innovation Center of Advanced Pharmaceutical & Artificial Intelligence, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
2
|
Yang X, Yao L, Fu X, Mukherjee R, Xia Q, Jakubowska MA, Ferdek PE, Huang W. Experimental Acute Pancreatitis Models: History, Current Status, and Role in Translational Research. Front Physiol 2020; 11:614591. [PMID: 33424638 PMCID: PMC7786374 DOI: 10.3389/fphys.2020.614591] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/30/2020] [Indexed: 02/05/2023] Open
Abstract
Acute pancreatitis is a potentially severe inflammatory disease that may be associated with a substantial morbidity and mortality. Currently there is no specific treatment for the disease, which indicates an ongoing demand for research into its pathogenesis and development of new therapeutic strategies. Due to the unpredictable course of acute pancreatitis and relatively concealed anatomical site in the retro-peritoneum, research on the human pancreas remains challenging. As a result, for over the last 100 years studies on the pathogenesis of this disease have heavily relied on animal models. This review aims to summarize different animal models of acute pancreatitis from the past to present and discuss their main characteristics and applications. It identifies key studies that have enhanced our current understanding of the pathogenesis of acute pancreatitis and highlights the instrumental role of animal models in translational research for developing novel therapies.
Collapse
Affiliation(s)
- Xinmin Yang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Linbo Yao
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xianghui Fu
- Division of Endocrinology and Metabolism, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Rajarshi Mukherjee
- Liverpool Pancreatitis Research Group, Liverpool University Hospitals National Health Service Foundation Trust and Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Qing Xia
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Pawel E. Ferdek
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Wei Huang
- Department of Integrated Traditional Chinese Medicine and Western Medicine, Sichuan Provincial Pancreatitis Center and West China-Liverpool Biomedical Research Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Koźma EM, Kuźnik-Trocha K, Winsz-Szczotka K, Wisowski G, Olczyk P, Komosińska-Vassev K, Kasperczyk M, Olczyk K. Significant Remodeling Affects the Circulating Glycosaminoglycan Profile in Adult Patients with both Severe and Mild Forms of Acute Pancreatitis. J Clin Med 2020; 9:jcm9051308. [PMID: 32370095 PMCID: PMC7290898 DOI: 10.3390/jcm9051308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 01/04/2023] Open
Abstract
Acute pancreatitis (AP) manifests itself either as a mild, self-limiting inflammation or a severe, systemic inflammatory process that is associated with various complications and a high mortality rate. It is unknown whether these two forms of the disease can differ in the profile of circulating glycosaminoglycans, which are molecules with huge biological reactivity due to a high density of negative electric charge. Plasma glycosaminoglycans were characterized/quantified in 23 healthy controls, 32 patients with mild AP, and 15 individuals with severe disease using electrophoresis with enzymatic identification (chondroitin sulfate and heparan sulfate) or an ELISA-based test (hyaluronan). Moreover, the correlations between the glycosaminoglycan levels and clinical parameters were evaluated. Both forms of AP showed similar remodeling of the plasma profile of the sulfated glycosaminoglycans. In contrast, only in the patients with mild AP was the level of circulating hyaluronan significantly decreased as compared to the healthy controls. Both forms of AP are associated with systemic changes in the metabolism of glycosaminoglycans. However, the alterations in hyaluronan metabolism may contribute to the disease evolution. The circulating hyaluronan may have some clinical value to predict the severity of AP and to evaluate the clinical status of patients with severe AP.
Collapse
Affiliation(s)
- Ewa M. Koźma
- Department of Clinical Chemistry and Laboratory Diagnostisc, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.W.-S.); (G.W.); (K.K.-V.); (K.O.)
- Correspondence:
| | - Kornelia Kuźnik-Trocha
- Department of Clinical Chemistry and Laboratory Diagnostisc, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.W.-S.); (G.W.); (K.K.-V.); (K.O.)
| | - Katarzyna Winsz-Szczotka
- Department of Clinical Chemistry and Laboratory Diagnostisc, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.W.-S.); (G.W.); (K.K.-V.); (K.O.)
| | - Grzegorz Wisowski
- Department of Clinical Chemistry and Laboratory Diagnostisc, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.W.-S.); (G.W.); (K.K.-V.); (K.O.)
| | - Paweł Olczyk
- Department of Community Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, Kasztanowa 3, 41-200 Sosnowiec, Poland;
| | - Katarzyna Komosińska-Vassev
- Department of Clinical Chemistry and Laboratory Diagnostisc, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.W.-S.); (G.W.); (K.K.-V.); (K.O.)
| | - Mariusz Kasperczyk
- Department of General Surgery and Multiorgan Injuries, The St. Barbara’s Specialist Hospital, Plac Medyków 1, 41-200 Sosnowiec, Poland;
| | - Krystyna Olczyk
- Department of Clinical Chemistry and Laboratory Diagnostisc, Faculty of Pharmaceutical Sciences, Medical University of Silesia, Katowice, Jedności 8, 41-200 Sosnowiec, Poland; (K.K.-T.); (K.W.-S.); (G.W.); (K.K.-V.); (K.O.)
| |
Collapse
|
4
|
Knockdown of Myeloid Differentiation Factor 88 Attenuates Lipopolysaccharide-Induced Inflammatory Response in Pancreatic Ductal Cells. Pancreas 2016; 45:755-60. [PMID: 26684858 DOI: 10.1097/mpa.0000000000000565] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study was to explore the potential role of myeloid differentiation factor 88 (MyD88), which acts as an adaptor in the TLR4 signalling pathway, in immune responses of the pancreatic duct during acute pancreatitis. METHODS Primary cultures of pancreatic duct epithelial cells from Wistar rats and cultures of the pancreatic ductal ARIP cell line were treated with lipopolysaccharide (LPS), and expression of toll-like receptor 4 mRNA was determined using real-time PCR, expression of MyD88 protein using Western blot, and levels of inflammatory cytokines using enzyme-linked immunosorbent assay. These experiments were repeated using ARIP cells in which MyD88 expression was stably knocked down. RESULTS Toll-like receptor 4 and MyD88 expression were similar between pancreatic duct epithelial cells and ARIP cells after LPS stimulation. Myeloid differentiation factor 88 knockdown led to significantly lower levels of inflammatory cytokines after LPS induction in ARIP cells. CONCLUSIONS Myeloid differentiation factor 88 knockdown attenuates LPS-induced inflammatory responses in pancreatic ductal cells, suggesting that the MyD88 pathway plays a critical role in their immune defense activity.
Collapse
|
5
|
Ren JD, Fan L, Tian FZ, Fan KH, Yu BT, Jin WH, Tan YH, Cheng L. Involvement of a membrane potassium channel in heparan sulphate-induced activation of macrophages. Immunology 2014; 141:345-52. [PMID: 24138091 DOI: 10.1111/imm.12193] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 10/14/2013] [Accepted: 10/15/2013] [Indexed: 12/30/2022] Open
Affiliation(s)
- Jian-Dong Ren
- Department of Pharmacy; General Hospital of Chengdu Military Region; Chengdu China
| | - Li Fan
- Department of Pharmacy; Xinqiao Hospital; the Third Military Medical University; Chongqing China
| | - Fu-Zhou Tian
- Department of General Surgery; General Hospital of Chengdu Military Region; Chengdu China
| | - Kai-Hua Fan
- Department of Pharmacy; General Hospital of Chengdu Military Region; Chengdu China
| | - Bo-Tao Yu
- Department of Pharmacy; General Hospital of Chengdu Military Region; Chengdu China
| | - Wei-Hua Jin
- Department of Pharmacy; General Hospital of Chengdu Military Region; Chengdu China
| | - Yong-Hong Tan
- Department of Pharmacy; General Hospital of Chengdu Military Region; Chengdu China
| | - Long Cheng
- Department of General Surgery; General Hospital of Chengdu Military Region; Chengdu China
| |
Collapse
|
6
|
Vaz J, Akbarshahi H, Andersson R. Controversial role of toll-like receptors in acute pancreatitis. World J Gastroenterol 2013; 19:616-630. [PMID: 23431068 PMCID: PMC3574587 DOI: 10.3748/wjg.v19.i5.616] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/12/2013] [Indexed: 02/06/2023] Open
Abstract
Acute pancreatitis (AP) is a common clinical condition with an incidence of about 300 or more patients per million annually. About 10%-15% of patients will develop severe acute pancreatitis (SAP) and of those, 10%-30% may die due to SAP-associated complications. Despite the improvements done in the diagnosis and management of AP, the mortality rate has not significantly declined during the last decades. Toll-like receptors (TLRs) are pattern-recognition receptors that seem to play a major role in the development of numerous diseases, which make these molecules attractive as potential therapeutic targets. TLRs are involved in the development of the systemic inflammatory response syndrome, a potentially lethal complication in SAP. In the present review, we explore the current knowledge about the role of different TLRs that have been described associated with AP. The main candidate for targeting seems to be TLR4, which recognizes numerous damage-associated molecular patterns related to AP. TLR2 has also been linked with AP, but there are only limited studies that exclusively studied its role in AP. There is also data suggesting that TLR9 may play a role in AP.
Collapse
|
7
|
Akbarshahi H, Axelsson JBF, Said K, Malmström A, Fischer H, Andersson R. TLR4 dependent heparan sulphate-induced pancreatic inflammatory response is IRF3-mediated. J Transl Med 2011; 9:219. [PMID: 22188870 PMCID: PMC3286488 DOI: 10.1186/1479-5876-9-219] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 12/21/2011] [Indexed: 01/13/2023] Open
Abstract
Background Degraded extracellular matrix can stimulate the innate immune system via the Toll-Like Receptor-4 (TLR4). In the pancreas, syndecan-anchored heparan sulphate (HS) on the ductal epithelium can be cleaved off its protein cores by the proteases (trypsin and elastase) and potentially activate TLR4 signalling. Methods To investigate this signalling event, a low sulphated HS (500 μg/ml) was infused into the biliary-pancreatic duct of C57BL/6J wild-type mice. Phosphate buffered saline (PBS) and lipopolysaccharide (LPS) were used as negative and positive controls, respectively. Mice were sacrificed after 1, 3, 6, 9, and 48 hours and tissues were analysed for neutrophil and cytokine contents. In order to study the TLR4 signalling pathway of HS in the pancreas, genetically engineered mice lacking TLR4, Myeloid Differentiation primary response gene (88) (MyD88) or Interferon Regulatory Factor 3 (IRF3) were subjected to pancreatic infusion of HS. Results Neutrophil sequestration and corresponding myeloperoxidase (MPO) activity in the pancreas were increased 9 hours following HS challenge. In wild-type mice, the monocyte chemoattractant protein-1(MCP-1) increased at 3 hours after infusion, while RANTES increased after 9 hours. TLR4, MyD88, and IRF3 knockout mice showed an abrogated neutrophil recruitment and myeloperoxidase activity in the HS group, while the LPS response was only abolished in TLR4 and MyD88 knockouts. Conclusions The results of this study show that HS is capable of initiating a TLR4-dependent innate immune response in the pancreas which is distinctly different from that induced by LPS. This inflammatory response was mediated predominantly through IRF3- dependent pathway. Release of HS into the pancreatic duct may be one important mediator in the pancreatic ductal defence.
Collapse
Affiliation(s)
- Hamid Akbarshahi
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
8
|
Axelsson JB, Akbarshahi H, Said K, Malmström A, Andersson R. Proposed protective mechanism of the pancreas in the rat. JOURNAL OF INFLAMMATION-LONDON 2010; 7:24. [PMID: 20482799 PMCID: PMC2887862 DOI: 10.1186/1476-9255-7-24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 05/18/2010] [Indexed: 01/05/2023]
Abstract
Background Heparan sulphate is known to have various functions in the animal body, including surveillance of tissue integrity. Administered intraperitoneally, it induces a systemic inflammatory response syndrome and when given locally in the pancreas it initiates a protective inflammatory response. The aim of the present study was to investigate the underlying mechanisms behind cell recruitment following intra-ductal infusion of heparan sulphate. Methods Rats were subjected to intraductal-infusion of heparan sulphate, lipopolysaccharide and phosphate buffered saline into the pancreas. Pancreatic tissue was harvested 1, 3, 6, 9 or 48 hours after infusion and stained immunohistochemically for myeloperoxidase, ED-1, CINC-1 and MCP-1, as well as using eosin hematoxylin staining. Furthermore, MPO activity and MCP-1 and CINC-1 concentrations of tissue homogenates were measured. All differences were analyzed statistically using the Mann-Whitney U-test. Results During HS infusion, a rapid influx of macrophages/monocytes, as visualized as ED-1 positive cells, was seen reaching a maximum at 6 hours. After 48 hours, the same levels of ED-1 positive cells were noted in the pancreatic tissue, but with different location and morphology. Increased neutrophil numbers of heparan sulphate treated animals compared to control could be detected only 9 hours after infusion. The number of neutrophils was lower than the number of ED-1 positive cells. On the contrary, LPS infusion caused increased neutrophil numbers to a larger extent than heparan sulphate. Furthermore, this accumulation of neutrophils preceded the infiltration of ED-1 positive cells. Chemokine expression correlates very well to the cell infiltrate. MCP-1 was evident in the ductal cells of both groups early on. MCP-1 preceded monocyte infiltration in both groups, while the CINC-1 increase was only noticeable in the LPS group. Conclusions Our data suggest that heparan and LPS both induce host defense reactions, though by using different mechanisms of cell-recruitment. This implies that the etiology of pancreatic inflammation may influence how the subsequent events will develop.
Collapse
Affiliation(s)
- Jakob Bf Axelsson
- Department of Clinical Sciences Lund, Lund University, BMC, D12, SE-221 84 Lund, Sweden.
| | | | | | | | | |
Collapse
|
9
|
Zhou MT, Chen CS, Chen BC, Zhang QY, Andersson R. Acute lung injury and ARDS in acute pancreatitis: Mechanisms and potential intervention. World J Gastroenterol 2010; 16:2094-9. [PMID: 20440849 PMCID: PMC2864834 DOI: 10.3748/wjg.v16.i17.2094] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) in acute pancreatitis still represents a substantial problem, with a mortality rate in the range of 30%-40%. The present review evaluates underlying pathophysiological mechanisms in both ALI and ARDS and potential clinical implications. Several mediators and pathophysiological pathways are involved during the different phases of ALI and ARDS. The initial exudative phase is characterized by diffuse alveolar damage, microvascular injury and influx of inflammatory cells. This phase is followed by a fibro-proliferative phase with lung repair, type II pneumocyte hypoplasia and proliferation of fibroblasts. Proteases derived from polymorphonuclear neutrophils, various pro-inflammatory mediators, and phospholipases are all involved, among others. Contributing factors that promote pancreatitis-associated ALI may be found in the gut and mesenteric lymphatics. There is a lack of complete understanding of the underlying mechanisms, and by improving our knowledge, novel tools for prevention and intervention may be developed, thus contributing to improved outcome.
Collapse
|
10
|
Liu H, Li Y, Wang L, Chen H, Guan J, Zhou Z. Aggravation of acute pancreatitis by heparan sulfate in mice. Scand J Gastroenterol 2009; 44:626-32. [PMID: 19194821 DOI: 10.1080/00365520902745047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Systemic inflammatory response syndrome (SIRS) is responsible for pancreatitis-associated mortality, but its initiating events are poorly understood. Possible candidates may be endogenous substances, which have previously been shown to mediate inflammatory responses. The aim of this study was to investigate whether SIRS could be exaggerated by heparan sulfate (HS) in acute pancreatitis (AP). MATERIAL AND METHODS AP was induced in mice by cerulein injection and HS was administered one hour after the final cerulein injection. The severity of pancreatitis was assessed by serum amylase activity, pancreatic edema, and pancreatic myeloperoxidase (MPO) activity. Systemic inflammation was evaluated by assessing lung injury and by measuring serum levels of tumor necrosis factor (TNF)-alpha and interleukin (IL)-6. Cytokine levels were also measured in pancreas and lung tissues. RESULTS HS did not worsen the pancreatic injury induced by cerulein. In contrast, HS exacerbated the systemic inflammation as measured by augmented lung MPO activity, increased lung TNF-alpha and IL-6 levels, and elevated serum IL-6 levels. CONCLUSIONS Our results indicate a potential role for HS in propagating pancreatic inflammation from a local process to a systemic response and thus suggest the possibility that blockade of HS might improve the outcome of SIRS in AP.
Collapse
Affiliation(s)
- Hongxiang Liu
- Institute of Digestive Surgery, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | | | |
Collapse
|
11
|
Soga Y, Komori H, Miyazaki T, Arita N, Terada M, Kamada K, Tanaka Y, Fujino T, Hiasa Y, Matsuura B, Onji M, Nose M. Toll-like receptor 3 signaling induces chronic pancreatitis through the Fas/Fas ligand-mediated cytotoxicity. TOHOKU J EXP MED 2009; 217:175-84. [PMID: 19282652 DOI: 10.1620/tjem.217.175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Innate immunity plays important roles in host defense against pathogens, but may also contribute to the development of autoimmune diseases under certain conditions. Toll-like receptors (TLRs) recognize various pathogens and induce innate immunity. We herein present a mouse model for chronic pancreatitis, which was induced by TLR3 signaling that generated the Fas/Fas ligand (FasL)-mediated cytotoxicity. An analogue of viral double-stranded RNA, polyinosinic:polycytidylic acid (poly I:C), which is recognized by TLR3, was injected into autoimmune-prone strains: MRL/Mp mice (MRL/+), MRL/Mp mice with a deficit of Fas (MRL/lpr) and MRL/Mp mice with a deficit of functional FasL (MRL/gld). The pancreatitis in MRL/+ mice was initiated by the destruction of pancreatic ductules, and its severity was significantly higher than that in MRL/lpr mice or MRL/gld mice. Using a pancreatic duct epithelial cell line MRL/S-1 newly established from the MRL/gld mouse that lacks FasL, we showed that treatment with poly I:C significantly induced the expression of Fas on the cultured cells. MRL/S-1 cells were destructed when co-cultured with splenocytes bearing intact FasL prepared from MRL/+ or MRL/lpr mice, but the magnitude of cytotoxicity was smaller with splenocytes of MRL/gld mice. Likewise, synthetic FasL protein showed cytotoxicity on MRL/S-1 cells. Furthermore, MRL/S-1 cells expressed higher levels of chemokines after the treatment with poly I:C, suggesting that the poly I:C-mediated induction of chemokines may be responsible for recruitment of lymphoid cells to the pancreatic periductular regions. These findings indicate that TLR3 signaling generates the Fas/FasL-mediated cytotoxicity, thereby leading to the development of chronic pancreatitis.
Collapse
Affiliation(s)
- Yoshiko Soga
- Department of Pathogenomics, Ehime University Graduate School of Medicine, Ehime, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|