1
|
Sheng T, Wang L, Yan S, Wei Q, Geng X, Lan W, Chen Y, Liu Y, Li N. Involvement of gut microbiota recovery and autophagy induction in Youhua Kuijie formula's protection against experimental ulcerative colitis. Exp Anim 2024; 73:357-369. [PMID: 38599877 PMCID: PMC11534492 DOI: 10.1538/expanim.23-0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by overactive inflammatory response, impaired intestinal mucosal barrier and disrupted gut microbiota. Youhua Kuijie formula is a classic empirical prescription based on the pathogenesis of UC. The present study was designed to verify the protective effect of Youhua Kuijie formula on DSS-induced UC in mice and uncover the related mechanism. Youhua Kuijie formula were orally administrated to UC mice induced by DSS dissolved in drinking water for ten days. The protective effect of Youhua Kuijie formula was evidenced by reduced pathological symptoms accompanied by palliative inflammatory response and relatively intact intestinal barrier. The data from 16S rRNA gene sequencing and GC-MS untargeted metabolomics indicated that the supplement of Youhua Kuijie formula restructured gut microbiota community structure, and thereby modulated the metabolic profiles in UC mice. The analysis of pathway enrichment analysis suggested the major alterations in metabolic pathway were related to protein digestion and absorption. Besides, the results of the following experiments suggested that Youhua Kuijie formula treatment increased adenosine monophosphate-activated protein kinase (AMPK) activation, decreased mechanistic target of rapamycin (mTOR) phosphorylation, and thereby reversing autophagy deficiency in the intestinal tract of UC mice. Collectively, our results demonstrated that the regulation of AMPK/mTOR was involved in Youhua Kuijie formula administration mediated protective effect on UC.
Collapse
Affiliation(s)
- Tianjiao Sheng
- Graduate school, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshandong Road, Shenyang, Liaoning, 110847, P.R. China
- Department of Traditional Chinese Medicine, General Hospital of Northern Theater Command, No.83 Wenhua Road, Shenyang, Liaoning, 110016, P.R. China
| | - Lei Wang
- Department of anorectum, Hulunbuir Zhong Meng Hospital, No. 58 Xidajie Road, Hulunbuir, 021000, P.R. China
| | - Simeng Yan
- Department of 1st Area of Officers' Ward, General Hospital of Northern Theater Command, No.83 Wenhua Road, Shenyang, Liaoning, 110016, P.R. China
| | - Qiuyu Wei
- Graduate school, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshandong Road, Shenyang, Liaoning, 110847, P.R. China
| | - Xiao Geng
- Department of Traditional Chinese Medicine, General Hospital of Northern Theater Command, No.83 Wenhua Road, Shenyang, Liaoning, 110016, P.R. China
| | - Weiru Lan
- The third department of Anorectal hemorrhoids and Fistula, Liaoning University of Traditional Chinese Medicine Affiliated Third Hospital, No. 35, 11th Wei Road, Shenyang, Liaoning, 110003, P.R. China
| | - Yan Chen
- Graduate school, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshandong Road, Shenyang, Liaoning, 110847, P.R. China
| | - Yuedong Liu
- Graduate school, Liaoning University of Traditional Chinese Medicine, No. 79 Chongshandong Road, Shenyang, Liaoning, 110847, P.R. China
| | - Na Li
- Department of Anorectal Surgery, Xianyang Central Hospital, No. 78 Renmin East Road, Xianyang, Shaanxi, 712000, P.R. China
| |
Collapse
|
2
|
Shi YR, Hao WW, Zhang EX, Wang ZH, Li L. Role of autophagy in pathogenesis of ulcerative colitis. Shijie Huaren Xiaohua Zazhi 2023; 31:1022-1028. [DOI: 10.11569/wcjd.v31.i24.1022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Ulcerative colitis is a chronic idiopathic inflammatory disease involving the colorectal mucosa. It is characterized by recurrent attacks, such as abdominal pain, diarrhea, mucus, and purulent stool. At present, the pathogenesis of ulcerative colitis is not fully understood. Most scholars generally believe that the pathogenesis of ulcerative colitis is affected by genetic susceptibility, environmental factors, immune system disorders, microflora and intestinal microflora disorders, and other factors. In recent years, the concept of autophagy has gradually attracted the attention of the scientific community, and more and more scholars have begun to study the pathogenesis of ulcerative colitis on the basis of autophagy theory. This review will give an overview of cellular autophagy and discuss its role in the pathogenesis of ulcerative colitis.
Collapse
Affiliation(s)
- Yi-Rong Shi
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Wei-Wei Hao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Er-Xin Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Zhu-Huan Wang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| | - Le Li
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200120, China
| |
Collapse
|
3
|
Martelli A, Omrani M, Zarghooni M, Citi V, Brogi S, Calderone V, Sureda A, Lorzadeh S, da Silva Rosa SC, Grabarek BO, Staszkiewicz R, Los MJ, Nabavi SF, Nabavi SM, Mehrbod P, Klionsky DJ, Ghavami S. New Visions on Natural Products and Cancer Therapy: Autophagy and Related Regulatory Pathways. Cancers (Basel) 2022; 14:5839. [PMID: 36497321 PMCID: PMC9738256 DOI: 10.3390/cancers14235839] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macroautophagy (autophagy) has been a highly conserved process throughout evolution and allows cells to degrade aggregated/misfolded proteins, dysfunctional or superfluous organelles and damaged macromolecules, in order to recycle them for biosynthetic and/or energetic purposes to preserve cellular homeostasis and health. Changes in autophagy are indeed correlated with several pathological disorders such as neurodegenerative and cardiovascular diseases, infections, cancer and inflammatory diseases. Conversely, autophagy controls both apoptosis and the unfolded protein response (UPR) in the cells. Therefore, any changes in the autophagy pathway will affect both the UPR and apoptosis. Recent evidence has shown that several natural products can modulate (induce or inhibit) the autophagy pathway. Natural products may target different regulatory components of the autophagy pathway, including specific kinases or phosphatases. In this review, we evaluated ~100 natural compounds and plant species and their impact on different types of cancers via the autophagy pathway. We also discuss the impact of these compounds on the UPR and apoptosis via the autophagy pathway. A multitude of preclinical findings have shown the function of botanicals in regulating cell autophagy and its potential impact on cancer therapy; however, the number of related clinical trials to date remains low. In this regard, further pre-clinical and clinical studies are warranted to better clarify the utility of natural compounds and their modulatory effects on autophagy, as fine-tuning of autophagy could be translated into therapeutic applications for several cancers.
Collapse
Affiliation(s)
- Alma Martelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Marzieh Omrani
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Maryam Zarghooni
- Department of Laboratory Medicine & Pathobiology, University of Toronto Alumna, Toronto, ON M5S 3J3, Canada
| | - Valentina Citi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Antoni Sureda
- Research Group in Community Nutrition, Oxidative Stress and Health Research Institute of the Balearic Islands (IdISBa), University of Balearic Islands, 07122 Palma de Mallorca, Spain
- CIBER Physiopathology of Obesity and Nutrition (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Simone C. da Silva Rosa
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Beniamin Oscar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- GynCentrum, Laboratory of Molecular Biology and Virology, 40-851 Katowice, Poland
| | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia, 41-800 Zabrze, Poland
- Department of Neurosurgery, 5th Military Clinical Hospital with the SP ZOZ Polyclinic in Krakow, 30-901 Krakow, Poland
| | - Marek J. Los
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Seyed Fazel Nabavi
- Nutringredientes Research Center, Federal Institute of Education, Science and Technology (IFCE), Baturite 62760-000, Brazil
| | - Seyed Mohammad Nabavi
- Advanced Medical Pharma (AMP-Biotec), Biopharmaceutical Innovation Centre, Via Cortenocera, 82030 San Salvatore Telesino, Italy
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Daniel J. Klionsky
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
- Faculty of Medicine in Zabrze, Academia of Silesia, 41-800 Zabrze, Poland
- Research Institute of Oncology and Hematology, Cancer Care Manitoba, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
4
|
Abbasi Teshnizi F, Kazemipour N, Nazifi S, Bagheri Lankarani K, Sepehrimanesh M, Razeghian Jahromi I. A study on the potential role of autophagy-related protein 10 as a biomarker for ulcerative colitis. Physiol Rep 2021; 9:e14825. [PMID: 33904657 PMCID: PMC8077160 DOI: 10.14814/phy2.14825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Ulcerative colitis (UC) is a lifelong disease with unclear etiology and increasing prevalence worldwide. Autophagy has been reported to play roles in the pathogenesis and progression of UC. Here, we aimed to analyze the expression of autophagy related protein 10 (ATG10) and its regulator, micro-RNA (miR) 519a, in UC patients. METHODS The level of ATG10 in the serum, stool, and colon biopsies from 15 UC patients and 30 non-UC healthy individuals (HC) group was measured by ELISA. Also, the blood level of miR-519a was investigated by quantitative real-time PCR. RESULTS We found 13.63 ng/ml versus 0.99 ng/ml, 11.01 ng/ml versus 1.11 ng/ml and 6.41 ng/ml versus 3.21 ng/ml of ATG10 in the stool, colon tissue, and serum of UC and HC, respectively. There was no significant difference in the expression of miR-519a in the blood samples of UC and HC. CONCLUSIONS ATG10 might be a potential non-invasive diagnostic biomarker for UC.
Collapse
Affiliation(s)
- Fatemeh Abbasi Teshnizi
- Biochemistry Division, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrin Kazemipour
- Biochemistry Division, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Clinical Pathology Division, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Masood Sepehrimanesh
- Department of Biology, University of Louisiana at Lafayette, Louisiana at Lafayette, LA, USA
| | | |
Collapse
|
5
|
Sepehrimanesh M, Samimi N, Koohi-Hosseinabadi O, Mokhtari M, Amiri-Zadeh S, Farjam M. Effects of Cupressus sempervirens extract on the healing of acetic acid-induced ulcerative colitis in rat. JOURNAL OF COLOPROCTOLOGY 2021. [DOI: 10.1016/j.jcol.2018.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AbstractUlcerative colitis is a chronic inflammatory condition of the colon with an unknown etiology. In this study, we aimed to evaluate the therapeutic effects of Cupressus sempervirens extract on the healing of acetic acid-induced ulcerative colitis in rat. Fifty-five male rats divided into five equal treatment groups were used for this study and received the following treatments: Group 1, 250 mg/kg asacol; Group 2, 1 ml gel base (carboxymethyl cellulose); Group 3, 0.5% gel form of C. sempervirens extract; Group 4, 1% gel form of C. sempervirens extract, and; Group 5, considered as negative control and received 1 ml of normal saline. Body weight changes, histopathological and antioxidant changes in the colon tissue were evaluated. Significant weight gain was observed in rats that received 1% gel extract of C. sempervirens. Significant superoxide dismutase activity was also detected in 0.5 and 1% gel extract groups compared to C. sempervirens extract, Asacol and in 1% gel extract groups compared to the gel base group. Furthermore, both gel extract groups had significant lower total antioxidant capacity compared to Asacol group. Several histopathological lesions including inflammation, ulceration, crypt disarray, and goblet cell depletion were detected in the different groups, however, the mean rank of pathological changes showed no significant difference among the five groups. In summary, our results showed that hydroalcoholic extracts of C. sempervirens leaves produces healing effects in acetic acid induced ulcerative colitis.
Collapse
Affiliation(s)
- Masood Sepehrimanesh
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Nastaran Samimi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Omid Koohi-Hosseinabadi
- Center of Comparative and Experimental Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeed Amiri-Zadeh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
6
|
Arab HH, Al-Shorbagy MY, Saad MA. Activation of autophagy and suppression of apoptosis by dapagliflozin attenuates experimental inflammatory bowel disease in rats: Targeting AMPK/mTOR, HMGB1/RAGE and Nrf2/HO-1 pathways. Chem Biol Interact 2021; 335:109368. [PMID: 33412153 DOI: 10.1016/j.cbi.2021.109368] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/30/2020] [Indexed: 12/16/2022]
Abstract
Dapagliflozin, a selective sodium-glucose co-transporter 2 (SGLT2) inhibitor, has featured marked anti-inflammatory effects in murine models of myocardial infarction, renal injury, and neuroinflammation. Yet, its potential impact on the pathogenesis of inflammatory bowel diseases (IBD) has not been previously investigated. The presented study aimed to explore the prospect of dapagliflozin to mitigate 2,4,6 trinitrobenzene sulfonic acid (TNBS)-induced rat colitis model which recapitulates several features of the human IBD. The molecular mechanisms pertaining to the dynamic balance between autophagy/apoptosis and colon injury were delineated, particularly, AMPK/mTOR, HMGB1/RAGE/NF-κB and Nrf2/HO-1 pathways. The colon tissues were examined using immunoblotting, ELISA, and histopathology. Dapagliflozin (0.1, 1 and 5 mg/kg; p.o.) dose-dependently mitigated colitis severity as manifested by suppression of the disease activity scores, macroscopic damage scores, colon weight/length ratio, histopathologic perturbations, and inflammatory markers. More important, dapagliflozin enhanced colonic autophagy via upregulating Beclin 1 and downregulating p62 SQSTM1 protein expression. In this context, dapagliflozin activated the AMPK/mTOR pathway by increasing the p-AMPK/AMPK and lowering the p-mTOR/mTOR ratios, thereby, favoring autophagy. Moreover, dapagliflozin dampened the colonic apoptosis via lowering the caspase-3 activity, cleaved caspase-3 expression, and Bax/Bcl-2 ratio. Furthermore, dapagliflozin attenuated the HMGB1/RAGE/NF-κB pathway via lowering HMGB1, RAGE, and p-NF-κBp65 protein expression. Regarding oxidative stress, dapagliflozin lowered the oxidative stress markers and augmented the Nrf2/HO-1 pathway. Together, the present study reveals, for the first time, the ameliorative effect of dapagliflozin against experimental colitis via augmenting colonic autophagy and curbing apoptosis through activation of AMPK/mTOR and Nrf2/HO-1 pathways and suppression of HMGB1/RAGE/NF-κB cascade.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| | - Muhammad Y Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmaceutical Sciences, College of Pharmacy, Gulf Medical University, Ajman, United Arab Emirates
| | - Muhammed A Saad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Department of Pharmacology and Toxicology, School of Pharmacy, NewGiza University, Giza, Egypt
| |
Collapse
|
7
|
Samimi N, Sepehrimanesh M, Koohi-Hosseinabadi O, Homayounfar R, Mokhtari M, Farjam M. The Therapeutic Effect of Shark Liver Oil in a Rat Model of Acetic Acid-Induced Ulcerative Colitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:2419230. [PMID: 33149751 PMCID: PMC7603576 DOI: 10.1155/2020/2419230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/01/2020] [Accepted: 10/06/2020] [Indexed: 12/22/2022]
Abstract
Ulcerative colitis (UC) is one of the most well-known types of inflammatory bowel disease that manifests as recurrent inflammation of rectum and colon. The goal of this study is to evaluate the protective effects of shark liver oil (SLO) on acetic acid-induced ulcerative colitis in rats. Eighty induced UC rats were randomly divided into ten equal groups and received the following treatments for seven days: 1 ml of normal saline rectally, 1 ml of gel base (carboxymethyl cellulose) rectally, 10 mg/kg of Asacol rectally, 10 mg/kg of mesalazine orally, 5% gel form of SLO rectally, 10% gel form of SLO rectally, 200 mg of SLO orally, and 400 mg of SLO orally. We examined the oxidative stress indices, histopathological features, and body weight changes, as well as the function of the liver and kidneys at the end of treatment. Administration of 10% rectal and 400 mg oral SLO resulted in a significant weight gain. Also, glutathione peroxidase activity was significantly higher in 5% and 10% SLO-treated groups, and elevated superoxide dismutase activity in rats that received 5% SLO was observed compared to negative control and Asacol groups. While no significant changes were observed in most of the kidney and liver function markers, higher levels of aspartate aminotransferase were detected in the group that received 400 mg SLO orally compared to negative control and Asacol groups. Many histopathological signs of improvement were observed in mesalazine, Asacol, and SLO groups. There were no significant changes detected in the mean rank among different groups. Our data indicate that SLO supplementation could improve the amelioration of acetic acid-induced UC in rats due to its antioxidant effects.
Collapse
Affiliation(s)
- Nastaran Samimi
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
| | - Masood Sepehrimanesh
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Homayounfar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Farjam
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
8
|
Ardali R, Kazemipour N, Nazifi S, Bagheri Lankarani K, Razeghian Jahromi I, Sepehrimanesh M. Pathophysiological role of Atg5 in human ulcerative colitis. Intest Res 2020; 18:421-429. [PMID: 32380583 PMCID: PMC7609390 DOI: 10.5217/ir.2019.00120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/19/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Ulcerative colitis (UC), along with Crohn's disease, is one of the main types of inflammatory bowel disease (IBD). On the other hand, deregulated autophagy is involved in many chronic diseases, including IBD. In this study, we aimed to investigate the role of Atg5 and microRNA-181a (miR-181a) in the pathophysiology of UC. METHODS Colon biopsy, stool, and blood samples of 6 men and 9 women were confirmed for UC. Also, 13 men and 17 women were selected as healthy control (HC). Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry were used to measure the Atg-5 content of the colon biopsies. Besides, the serum and stool levels of Atg5 were measured using ELISA. Moreover, the total RNA of blood cells was extracted and evaluated for the expression of miR-181a. RESULTS We found 1.2 ng/mL versus 0.46 ng/mL, 0.34 ng/mL versus 0.24 ng/mL, and 0.082 ng/mL versus 0.062 ng/mL of Atg5 in stool, intestinal tissue, and serum of UC and HCs, respectively. There was no significant difference in the expression of miR-181a in the blood samples of UC and HCs. Immunohistochemistry showed high positivity without any significant difference between the 2 groups in the quantitative analysis. CONCLUSIONS The significant difference observed between the stool Atg5 content of the HCs and UC patients may provide new insight into using this protein as a diagnostic biomarker, however, considering the small size of our studied population further studies are needed.
Collapse
Affiliation(s)
- Razieh Ardali
- Biochemistry Division, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Nasrin Kazemipour
- Biochemistry Division, Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Clinical Pathology Division, Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | | | - Masood Sepehrimanesh
- New Iberia Research Center, University of Louisiana at Lafayette, Lafayette, LA, USA
| |
Collapse
|
9
|
Gao Q, Bi P, Luo D, Guan Y, Zeng W, Xiang H, Mi Q, Yang G, Li X, Yang B. Nicotine-induced autophagy via AMPK/mTOR pathway exerts protective effect in colitis mouse model. Chem Biol Interact 2020; 317:108943. [PMID: 31926917 DOI: 10.1016/j.cbi.2020.108943] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/06/2019] [Accepted: 01/08/2020] [Indexed: 02/09/2023]
Abstract
Epidemiological studies have shown that cigarette smoking is beneficial in ulcerative colitis and that nicotine may be responsible for this effect. However, the mechanism remains unclear. In a previous study, nicotine was found to induce autophagy in intestinal cells. Here, we evaluated the effect of nicotine-induced autophagy in a dextran sodium sulfate (DSS)-induced colitis mouse model. C57BL/6 adult male mice drank DSS water solution freely for seven consecutive days, and then tap water was administered. The effect of nicotine treatment was examined in the DSS model, including colon length, disease severity, histology of the colon tissue, and inflammation levels. Moreover, autophagy levels were detected by Western blot analysis (LC3II/LC3I, p62, and beclin-1). The levels of DSS-induced colitis were significantly decreased following nicotine treatment. The disease activity score, body weight, histologic damage scores, and the level of colonic inflammatory factors of nicotine-treated mice all decreased compared to those of the control mice. Additionally, nicotine enhanced the expression of LC3II/LC3I and beclin-1 but decreased the p62 protein level. Inhibiting autophagy by 3-MA attenuated the protective effects of nicotine on colitis. Additionally, both in vitro and in vivo experiments showed changes in AMPK-mTOR-P70S6K during this process. These results suggest that nicotine improved colitis by regulating autophagy and provided a protective effect against DSS-induced colitis.
Collapse
Affiliation(s)
- Qian Gao
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Pinduan Bi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ding Luo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ying Guan
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Wanli Zeng
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Haiying Xiang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Qili Mi
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Guangyu Yang
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Xuemei Li
- Yunnan Key Laboratory of Tobacco Chemistry, R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China.
| | - Bin Yang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
10
|
Nikseresht M, Shahverdi M, Dehghani M, Abidi H, Mahmoudi R, Ghalamfarsa G, Manzouri L, Ghavami S. Association of single nucleotide autophagy-related protein 5 gene polymorphism rs2245214 with susceptibility to non-small cell lung cancer. J Cell Biochem 2019; 120:1924-1931. [PMID: 30242869 DOI: 10.1002/jcb.27467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
INTRODUCTION Autophagy is a mechanism that is involved in the regulation of cellular life, apoptosis, and stemness while its intervening genes play important functions in various cancers including lung cancer. ATG5 is one of the key genes for the regulation of the autophagy pathway. In this study, our team has investigated the potential relationship between ATG5 gene polymorphism rs2245214 with non-small cell lung cancer (NSCLC) in a subpopulation of patients from southern Iran. In this study, 34 patients with NSCLC (20 males and 14 females [mean age: 12.86 ± 60.47 years]) and 50 healthy subjects (30 males and 20 females [mean age: 13.09 ± 56.62 years]) were studied in terms of the genotype of the ATG5 gene. We used restriction fragment length polymorphism and analyzed the results using SPSS software (v.23). The results revealed that subjects harboring the guanine/cytosine (GC) genotype of the rs2245214 ATG5 gene polymorphism had suffered less from NSCLC, whereas the prevalence of the C-allele of this polymorphism was significantly higher in patients with NSCLC ( P < 0.05). On the basis of the results of logistic regression, the presence of this C-allele may predict the risk of lung cancer ( P value = 0.011; OR, 3.52; 95% CI, 1.33-9.26). This study concludes that the C-allele of the rs2245214 ATG5 gene polymorphism is associated with increased susceptibility to NSCLC, whereas the GC genotype of this polymorphism is associated with decreased risk and might therefore have a protective role in the development of NSCLC.
Collapse
Affiliation(s)
- Mohsen Nikseresht
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Maryam Shahverdi
- Students Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Mehdi Dehghani
- Hematology and Medical Oncology Department, Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hassan Abidi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Reza Mahmoudi
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Ghasem Ghalamfarsa
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Leila Manzouri
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
| | - Saeid Ghavami
- Social Determinants of Health Research Center, Yasuj University of Medical Sciences, Yasuj, Iran.,Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Children Hospital Research Institute of Manitoba, Biology of Breathing Theme, University of Manitoba, Winnipeg, Canada.,Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
11
|
Zhang P, Zhang J, Zhang Y, Wang S, Pang S, Yan B. Functional variants of the ATG7 gene promoter in acute myocardial infarction. Mol Genet Genomic Med 2018; 6:1209-1219. [PMID: 30407747 PMCID: PMC6305654 DOI: 10.1002/mgg3.508] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 10/07/2018] [Accepted: 10/16/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Coronary artery disease including acute myocardial infarction (AMI) is mainly caused by atherosclerosis, an inflammatory and metabolic disease. Autophagy has been demonstrated to play critical roles in lipid metabolism and inflammation. Altered autophagic activity has been reported in AMI patients. However, molecular basis for dysfunctional autophagy in AMI remains unexplained. METHODS In this study, the promoter of the ATG7 gene, encoding a core protein for autophagy, was genetically and functionally analyzed in large cohorts of AMI patients (n = 355) and ethnic-matched healthy controls (n = 363). Related molecular mechanisms were also explored. RESULTS A total of 19 DNA sequence variants (DSVs) including single-nucleotide polymorphisms (SNPs) were found in the ATG7 gene promoter. Two novel DSVs and five SNPs were only identified in AMI patients group. These DSVs and SNPs, except one SNP, significantly altered the transcriptional activity of the ATG7 gene promoter in both HEK-293 and H9c2 cells (p < 0.05). Further electrophoretic mobility shift assay revealed that the DSVs and SNPs evidently affected the binding of transcription factors. CONCLUSIONS ATG7 gene DSVs and SNPs identified in AMI patients may alter the transcriptional activity of the ATG7 gene promoter and change ATG7 level, contributing to the AMI development as a rare risk factor.
Collapse
Affiliation(s)
- Pei Zhang
- College of Clinical MedicineXinxiang Medical UniversityXinxiangHenanChina
- Division of EmergencyJining First People's HospitalJiningShandongChina
| | - Jie Zhang
- Department of MedicineShandong University School of MedicineJinanShandongChina
| | - Yexin Zhang
- Department of MedicineShandong University School of MedicineJinanShandongChina
| | - Shuai Wang
- Department of MedicineShandong University School of MedicineJinanShandongChina
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and TreatmentAffiliated Hospital of Jining Medical UniversityJining Medical UniversityJiningShandongChina
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and TreatmentAffiliated Hospital of Jining Medical UniversityJining Medical UniversityJiningShandongChina
- The Center for Molecular Genetics of Cardiovascular DiseasesAffiliated Hospital of Jining Medical UniversityJining Medical UniversityJiningShandongChina
- Shandong Provincial Sino‐US Cooperation Research Center for Translational MedicineAffiliated Hospital of Jining Medical UniversityJining Medical UniversityJiningShandongChina
| |
Collapse
|
12
|
|