1
|
Dagli MLZ, Nagamine MK, Ikeda TL, da Fonseca IIM, Kremer FS, Seixas FK, Hernandez CD, Leite JVP, Yasumaru CC, Massoco CO, Hsieh R, Lourenço SV, Collares TV. Identification of mutations in canine oral mucosal melanomas by exome sequencing and comparison with human melanomas. Sci Rep 2024; 14:24174. [PMID: 39406779 PMCID: PMC11480479 DOI: 10.1038/s41598-024-74748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Oral mucosal melanomas (OMMs) are aggressive neoplasms commonly found in dogs but rare in humans. Utilizing whole exome sequencing (WES), which focuses on protein-coding regions to reveal mutation profiles, we conducted a comparative analysis of canine OMM and human melanomas. This study involved DNA extraction, exome enrichment, and sequencing from three canine OMM cell lines (CMGD-2, CMGD-5, TLM-1), five canine OMM frozen samples, a human OMM cell line (MEMO), and a human commercial skin melanoma cell line (SK-MEL-28). The sequencing and subsequent analysis of FASTQ files yielded final variant files, leading to the identification of mutations. Our findings revealed a total of 500 mutated genes in canine OMM, including significant ones such as EP300, FAT4, JAK3, LRP1B, NCOR1, and NOTCH1. Notably, 82 shared mutations were identified between human melanomas and canine OMM genomes. These mutations were categorized based on the gene functions. The identification of these mutations provides critical insights that can pave the way for the development of novel therapeutic strategies for both canine and human OMM, offering hope for more effective treatments in the future.
Collapse
Affiliation(s)
- Maria Lucia Zaidan Dagli
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil.
| | - Márcia Kazumi Nagamine
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Tatícia Lieh Ikeda
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ivone Izabel Mackowiak da Fonseca
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - João Vitor Pereira Leite
- Laboratory of Experimental and Comparative Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Cassia Correa Yasumaru
- Laboratory of Comparative Imuno-Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Cristina Oliveira Massoco
- Laboratory of Comparative Imuno-Oncology, Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Ricardo Hsieh
- School of Dentistry, University of São Paulo, São Paulo, SP, Brazil
| | | | - Tiago Veiras Collares
- Laboratory of Cancer Biotechnology, Federal University of Pelotas, Pelotas, RS, Brazil
| |
Collapse
|
2
|
Horgan D, Van den Bulcke M, Malapelle U, Troncone G, Normanno N, Capoluongo ED, Prelaj A, Rizzari C, Trapani D, Singh J, Kozaric M, Longshore J, Ottaviano M, Boccia S, Pravettoni G, Cattaneo I, Malats N, Buettner R, Lekadir K, de Lorenzo F, Hofman P, De Maria R. Tackling the implementation gap for the uptake of NGS and advanced molecular diagnostics into healthcare systems. Heliyon 2024; 10:e23914. [PMID: 38234913 PMCID: PMC10792189 DOI: 10.1016/j.heliyon.2023.e23914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/19/2024] Open
Abstract
Next-generation sequencing (NGS) and liquid biopsy (LB) showed positive results in the fight against different cancer types. This paper aims to assess the uptake of advanced molecular diagnostics/NGS for quick and efficient genetic profiles of tumour cells. For that purpose, the European Alliance for Personalised Medicine conducted a series of expert interviews to ascertain the current status across member states. One stakeholder meeting was additionally conducted to prioritize relevant factors by stakeholders. Seven common pillars were identified, and twenty-five measures were defined based on these pillars. Results showed that a multi-faceted approach is necessary for successful NGS implementation and that regional differences may be influenced by healthcare policies, resources, and infrastructure. It is important to consider different correlations when interpreting the results and to use them as a starting point for further discussion.
Collapse
Affiliation(s)
- Denis Horgan
- European Alliance for Personalised Medicine, Brussels, Belgium
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Faculty of Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj - 211007, Uttar Pradesh India
| | | | - Umberto Malapelle
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy
| | - Giancarlo Troncone
- Department of Public Health, University Federico II of Naples, 80131 Naples, Italy
| | - Nicola Normanno
- Istituto Nazionale Tumori "Fondazione G. Pascale" - IRCCS, Naples, Italy
| | - Ettore D Capoluongo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- Department of Clinical Pathology and Genomics, Azienda Ospedaliera Per L'Emergenza Cannizzaro, Catania, Italy
| | - Arsela Prelaj
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Carmelo Rizzari
- Unità di Ematologia Pediatrica, Fondazione MBBM, Università di Milano-Bicocca, Monza, Italy
| | - Dario Trapani
- European Institute of Oncology, IRCCS, 20141 Milan, Italy
| | - Jaya Singh
- European Alliance for Personalised Medicine, Brussels, Belgium
| | - Marta Kozaric
- European Alliance for Personalised Medicine, Brussels, Belgium
| | - John Longshore
- Astra Zeneca, 1800 Concord Pike, Wilmington, DE 19803, USA
| | - Manuel Ottaviano
- Departamento de Tecnología Fotónica y Bioingeniería, Universidad Politècnica de Madrid, 28040 Madrid, Spain
| | - Stefania Boccia
- Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Departments of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gabriella Pravettoni
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Applied Research Division for Cognitive and Psychological Science, European Institute of Oncology (IEO) IRCCS, Milan, Italy
| | | | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid 28029, Spain
| | - Reinhard Buettner
- Lung Cancer Group Cologne, Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital Cologne, Cologne, Germany
| | - Karim Lekadir
- Artificial Intelligence in Medicine Lab (BCN-AIM), Universitat de Barcelona, Barcelona, Spain
| | | | - Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, 06000 Nice, France
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
3
|
Li Z, Lu T, Chen Z, Yu X, Wang L, Shen G, Huang H, Li Z, Ren Y, Guo W, Hu Y. HOXA11 promotes lymphatic metastasis of gastric cancer via transcriptional activation of TGFβ1. iScience 2023; 26:107346. [PMID: 37539033 PMCID: PMC10393827 DOI: 10.1016/j.isci.2023.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 08/05/2023] Open
Abstract
Most gastric cancer (GC) patients with early stage often have no lymph node (LN) metastases, while LN metastases appear in the advanced stage. However, there are some patients who present with early stage LN metastases and no LN metastases in the advanced stage. To explore the deeper molecular mechanisms involved, we collected clinical samples from early and advanced stage GC with and without LN metastases, as well as metastatic lymph nodes. Herein, we identified a key target, HOXA11, that was upregulated in GC tissues and closely associated with lymphatic metastases. HOXA11 transcriptionally regulates TGFβ1 expression and activates the TGFβ1/Smad2 pathway, which not only promotes EMT development but also induces VEGF-C secretion and lymphangiogenesis. These findings provide a plausible mechanism for HOXA11-modulated tumor in lymphatic metastasis and suggest that HOXA11 may represent a potential therapeutic target for clinical intervention in LN-metastatic gastric cancer.
Collapse
Affiliation(s)
- Zhenyuan Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Tailiang Lu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhian Chen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Xiang Yu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Lingzhi Wang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Guodong Shen
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Huilin Huang
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Zhenhao Li
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yingxin Ren
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Weihong Guo
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| | - Yanfeng Hu
- Department of General Surgery, Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, the First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, P.R. China
| |
Collapse
|
4
|
Establishment of an Absolute Quantitative Method to Detect a Plasma tRNA-Derived Fragment and Its Application in the Non-Invasive Diagnosis of Gastric Cancer. Int J Mol Sci 2022; 24:ijms24010322. [PMID: 36613767 PMCID: PMC9820402 DOI: 10.3390/ijms24010322] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
(1) Transfer RNA (tRNA)-derived fragments (tRFs) are a new category of regulatory non-coding RNAs with distinct biological functions in cancer. They are produced from pre-tRNAs or mature tRNAs and their sequences are relatively short; thus, the amplification of tRFs, especially those in body fluids, is faced with certain technical difficulties. In this study, we established a quantitative method to detect plasma tRF-27-87R8WP9N1E5 (tRF-27) and used it to screen gastric cancer patients. (2) A specific stem-loop-structure reverse transcription primer, a TaqMan probe, and amplification primers for tRF-27 were prepared, and the absolute quantitative method was used to measure plasma tRF-27 levels. To determine the noninvasive diagnostic value of tRF-27 in gastric cancer, plasma tRF-27 levels in patients with benign and malignant lesions (120 healthy individuals, 48 patients with benign lesions, 48 patients with precancerous lesions, and 72 patients with early gastric cancer) were analyzed. Plasma tRF-27 levels were also analyzed in 106 preoperative gastric cancer patients, 106 postoperative gastric cancer patients, and 120 healthy individuals. Survival curves and Cox regression models were established and analyzed. (3) A new absolute quantitative method to determine the plasma tRF-27 copy number was established. Plasma tRF-27 levels were significantly increased in gastric cancer patients compared to healthy individuals, and the area under the receiver operating characteristic curve was 0.7767, when the cutoff value was 724,807 copies/mL, with sensitivity and specificity values of 0.6226 and 0.8917, respectively. The positive predictive and negative predictive values were 83.50% and 72.80%, respectively. Plasma tRF-27 levels in postoperative gastric cancer patients were significantly decreased compared to preoperative gastric cancer patients and tended to the levels of healthy individuals. Moreover, tRF-27 levels were closely related to tumor size and Ki67 expression in gastric cancer patients. Prognostic analysis showed that tRF-27 may be an independent predictor of overall survival. (4) This novel and non-invasive method of measuring plasma tRF-27 levels was valuable in the early diagnosis of gastric cancer.
Collapse
|